June 7, 2022  |  

Senckenberg Biodiversity Genomics Symposium 2022

In collaboration with the LOEWE Centre for Translational Biodiversity, this virtual event will see scientists from Europe and beyond share their experiences using highly accurate long-read sequencing (HiFi sequencing), to generate…

April 21, 2020  |  

Towards PacBio-based pan-eukaryote metabarcoding using full-length ITS sequences.

Development of high-throughput sequencing techniques have greatly benefited our understanding about microbial ecology; yet the methods producing short reads suffer from species-level resolution and uncertainty of identification. Here we optimize PacBio-based metabarcoding protocols covering the Internal Transcribed Spacer (ITS region) and partial Small Subunit (SSU) of the rRNA gene for species-level identification of all eukaryotes, with a specific focus on Fungi (including Glomeromycota) and Stramenopila (particularly Oomycota). Based on tests on composite soil samples and mock communities, we propose best suitable degenerate primers, ITS9munngs + ITS4ngsUni for eukaryotes and selected groups therein and discuss pros and cons of long read-based identification of eukaryotes. This article is protected by copyright. All rights reserved.

April 21, 2020  |  

Full-Length Multi-Barcoding: DNA Barcoding from Single Ingredient to Complex Mixtures.

DNA barcoding has been used for decades, although it has mostly been applied to somesingle-species. Traditional Chinese medicine (TCM), which is mainly used in the form ofcombination-one type of the multi-species, identification is crucial for clinical usage.Next-generation Sequencing (NGS) has been used to address this authentication issue for the pastfew years, but conventional NGS technology is hampered in application due to its short sequencingreads and systematic errors. Here, a novel method, Full-length multi-barcoding (FLMB) vialong-read sequencing, is employed for the identification of biological compositions in herbalcompound formulas in adequate and well controlled studies. By directly sequencing the full-lengthamplicons of ITS2 and psbA-trnH through single-molecule real-time (SMRT) technology, thebiological composition of a classical prescription Sheng-Mai-San (SMS) was analyzed. At the sametime, clone-dependent Sanger sequencing was carried out as a parallel control. Further, anotherformula-Sanwei-Jili-San (SJS)-was analyzed with genes of ITS2 and CO1. All the ingredients inthe samples of SMS and SJS were successfully authenticated at the species level, and 11 exogenousspecies were also checked, some of which were considered as common contaminations in theseproducts. Methodology analysis demonstrated that this method was sensitive, accurate andreliable. FLMB, a superior but feasible approach for the identification of biological complexmixture, was established and elucidated, which shows perfect interpretation for DNA barcodingthat could lead its application in multi-species mixtures.

April 21, 2020  |  

Biodiversity seen through the perspective of insects: 10 simple rules on methodological choices and experimental design for genomic studies.

Massively parallel DNA sequencing opens up opportunities for bridging multiple temporal and spatial dimensions in biodiversity research, thanks to its efficiency to recover millions of nucleotide polymorphisms. Here, we identify the current status, discuss the main challenges, and look into future perspectives on biodiversity genomics focusing on insects, which arguably constitute the most diverse and ecologically important group among all animals. We suggest 10 simple rules that provide a succinct step-by-step guide and best-practices to anyone interested in biodiversity research through the study of insect genomics. To this end, we review relevant literature on biodiversity and evolutionary research in the field of entomology. Our compilation is targeted at researchers and students who may not yet be specialists in entomology or molecular biology. We foresee that the genomic revolution and its application to the study of non-model insect lineages will represent a major leap to our understanding of insect diversity.

April 21, 2020  |  

Expedited assessment of terrestrial arthropod diversity by coupling Malaise traps with DNA barcoding 1.

Monitoring changes in terrestrial arthropod communities over space and time requires a dramatic increase in the speed and accuracy of processing samples that cannot be achieved with morphological approaches. The combination of DNA barcoding and Malaise traps allows expedited, comprehensive inventories of species abundance whose cost will rapidly decline as high-throughput sequencing technologies advance. Aside from detailing protocols from specimen sorting to data release, this paper describes their use in a survey of arthropod diversity in a national park that examined 21?194 specimens representing 2255 species. These protocols can support arthropod monitoring programs at regional, national, and continental scales.

April 21, 2020  |  

Comparative Phylogenomics, a Stepping Stone for Bird Biodiversity Studies

Birds are a group with immense availability of genomic resources, and hundreds of forthcoming genomes at the doorstep. We review recent developments in whole genome sequencing, phylogenomics, and comparative genomics of birds. Short read based genome assemblies are common, largely due to efforts of the Bird 10K genome project (B10K). Chromosome-level assemblies are expected to increase due to improved long-read sequencing. The available genomic data has enabled the reconstruction of the bird tree of life with increasing confidence and resolution, but challenges remain in the early splits of Neoaves due to their explosive diversification after the Cretaceous-Paleogene (K-Pg) event. Continued genomic sampling of the bird tree of life will not just better reflect their evolutionary history but also shine new light onto the organization of phylogenetic signal and conflict across the genome. The comparatively simple architecture of avian genomes makes them a powerful system to study the molecular foundation of bird specific traits. Birds are on the verge of becoming an extremely resourceful system to study biodiversity from the nucleotide up.

September 22, 2019  |  

Molecular characterization of eukaryotic algal communities in the tropical phyllosphere based on real-time sequencing of the 18S rDNA gene.

Foliicolous algae are a common occurrence in tropical forests. They are referable to a few simple morphotypes (unicellular, sarcinoid-like or filamentous), which makes their morphology of limited usefulness for taxonomic studies and species diversity assessments. The relationship between algal community and their host phyllosphere was not clear. In order to obtain a more accurate assessment, we used single molecule real-time sequencing of the 18S rDNA gene to characterize the eukaryotic algal community in an area of South-western China.We annotated 2922 OTUs belonging to five classes, Ulvophyceae, Trebouxiophyceae, Chlorophyceae, Dinophyceae and Eustigmatophyceae. Novel clades formed by large numbers sequences of green algae were detected in the order Trentepohliales (Ulvophyceae) and the Watanabea clade (Trebouxiophyceae), suggesting that these foliicolous communities may be substantially more diverse than so far appreciated and require further research. Species in Trentepohliales, Watanabea clade and Apatococcus clade were detected as the core members in the phyllosphere community studied. Communities from different host trees and sampling sites were not significantly different in terms of OTUs composition. However, the communities of Musa and Ravenala differed from other host plants significantly at the genus level, since they were dominated by Trebouxiophycean epiphytes.The cryptic diversity of eukaryotic algae especially Chlorophytes in tropical phyllosphere is very high. The community structure at species-level has no significant relationship either with host phyllosphere or locations. The core algal community in tropical phyllopshere is consisted of members from Trentepohliales, Watanabea clade and Apatococcus clade. Our study provided a large amount of novel 18S rDNA sequences that will be useful to unravel the cryptic diversity of phyllosphere eukaryotic algae and for comparisons with similar future studies on this type of communities.

September 22, 2019  |  

Capturing natural product biosynthetic pathways from uncultivated symbiotic bacteria of marine sponges through metagenome mining: a mini-review

Symbiotic bacteria associated with marine sponges have frequently been proposed as the true producer of many bioactive natural products with potent anticancer activities. However, the majority of these complex symbiotic bacteria cannot be cultivated under laboratory conditions, hampering efforts to access and develop their potent compounds for therapeutic applications. Metagenome mining is a powerful cultivation-independent tool that can be used to search for new natural product biosynthetic pathways from highly complex bacterial consortia. Some notable examples of natural products, in which their biosynthetic pathways have been cloned by metagenome mining are onnamide A, psymberin, polytheonamides, calyculin, and misakinolide A. Subsequent expression of the pathways in easily culturable bacteria, such as Escherichia coli, could lead to the sustainable production of rare promising natural products. This review discusses principles of metagenome mining developed to gain access to natural product biosynthetic pathways from uncultured symbiotic bacteria of marine sponges. This includes detecting biosynthetic genes in sponge metagenome, creating large metagenomic library, rapid screening of metagenomic library, and clone sequencing. For many natural products made by modular polyketide synthases (PKSs) and hybrids with non-ribosomal peptide synthetases (NRPSs), their biosynthetic pathways as well as structures of final products can be predicted with high accuracy through bioinformatic analysis and sometimes combined with functional proof. Further metagenome sequencing integrated with single-cell analysis and chemical studies could provide insights into the remarkable biosynthetic capacity of uncultivated bacterial symbionts, thereby facilitating the discovery and sustainable production of a wide diversity of sponge-derived complex compounds.

September 22, 2019  |  

Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system.

Over the past 10 years, microbial ecologists have largely abandoned sequencing 16S rRNA genes by the Sanger sequencing method and have instead adopted highly parallelized sequencing platforms. These new platforms, such as 454 and Illumina’s MiSeq, have allowed researchers to obtain millions of high quality but short sequences. The result of the added sequencing depth has been significant improvements in experimental design. The tradeoff has been the decline in the number of full-length reference sequences that are deposited into databases. To overcome this problem, we tested the ability of the PacBio Single Molecule, Real-Time (SMRT) DNA sequencing platform to generate sequence reads from the 16S rRNA gene. We generated sequencing data from the V4, V3-V5, V1-V3, V1-V5, V1-V6, and V1-V9 variable regions from within the 16S rRNA gene using DNA from a synthetic mock community and natural samples collected from human feces, mouse feces, and soil. The mock community allowed us to assess the actual sequencing error rate and how that error rate changed when different curation methods were applied. We developed a simple method based on sequence characteristics and quality scores to reduce the observed error rate for the V1-V9 region from 0.69 to 0.027%. This error rate is comparable to what has been observed for the shorter reads generated by 454 and Illumina’s MiSeq sequencing platforms. Although the per base sequencing cost is still significantly more than that of MiSeq, the prospect of supplementing reference databases with full-length sequences from organisms below the limit of detection from the Sanger approach is exciting.

September 22, 2019  |  

Investigating bacterial population structure and dynamics in traditional koumiss from Inner Mongolia using single molecule real-time sequencing.

Koumiss is considered as a complete dairy product high in nutrients and with medicinal properties. The bacterial communities involved in production of koumiss play a crucial role in the fermentation cycle. To reveal bacterial biodiversity in koumiss and the dynamics of succession in bacterial populations during fermentation, 22 samples were collected from 5 sampling sites and the full length of the 16S ribosomal RNA genes sequenced using single molecule real-time sequencing technology. One hundred forty-eight species were identified from 82 bacterial genera and 8 phyla. These results suggested that the structural difference in the bacterial community could be attributed to geographical location. The most significant difference in bacterial composition occurred in samples from group D compared with other groups. The sampling location of group D was distant from the city and maintained the primitive local nomadic life. The dynamics of succession in bacterial communities showed that Lactobacillus helveticus increased in abundance from 0 to 9h and reached its peak at 9h and then decreased. In contrast, Enterococcus faecalis, Enterococcus durans, and Enterococcus casseliflavus increased gradually throughout the fermentation process, and reached a maximum after 24h. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

September 22, 2019  |  

High-resolution phylogenetic microbial community profiling.

Over the past decade, high-throughput short-read 16S rRNA gene amplicon sequencing has eclipsed clone-dependent long-read Sanger sequencing for microbial community profiling. The transition to new technologies has provided more quantitative information at the expense of taxonomic resolution with implications for inferring metabolic traits in various ecosystems. We applied single-molecule real-time sequencing for microbial community profiling, generating full-length 16S rRNA gene sequences at high throughput, which we propose to name PhyloTags. We benchmarked and validated this approach using a defined microbial community. When further applied to samples from the water column of meromictic Sakinaw Lake, we show that while community structures at the phylum level are comparable between PhyloTags and Illumina V4 16S rRNA gene sequences (iTags), variance increases with community complexity at greater water depths. PhyloTags moreover allowed less ambiguous classification. Last, a platform-independent comparison of PhyloTags and in silico generated partial 16S rRNA gene sequences demonstrated significant differences in community structure and phylogenetic resolution across multiple taxonomic levels, including a severe underestimation in the abundance of specific microbial genera involved in nitrogen and methane cycling across the Lake’s water column. Thus, PhyloTags provide a reliable adjunct or alternative to cost-effective iTags, enabling more accurate phylogenetic resolution of microbial communities and predictions on their metabolic potential.

September 22, 2019  |  

First draft genome assembly of the Argane tree (Argania spinosa)

Background: The Argane tree (Argania spinosa L. Skeels) is an endemic tree of southwestern Morocco that plays an important socioeconomic and ecologic role for a dense human population in an arid zone. Several studies confirmed the importance of this species as a food and feed source and as a resource for both pharmaceutical and cosmetic compounds. Unfortunately, the argane tree ecosystem is facing significant threats from environmental changes (global warming, over-population) and over-exploitation. Limited research has been conducted, however, on argane tree genetics and genomics, which hinders its conservation and genetic improvement. Methods: Here, we present a draft genome assembly of A. spinosa. A reliable reference genome of A. spinosa was created using a hybrid de novo assembly approach combining short and long sequencing reads. Results: In total, 144 Gb Illumina HiSeq reads and 7.2 Gb PacBio reads were produced and assembled. The final draft genome comprises 75 327 scaffolds totaling 671 Mb with an N50 of 49 916 kb. The draft assembly is close to the genome size estimated by k-mers distribution and covers 89% of complete and 4.3 % of partial Arabidopsis orthologous groups in BUSCO. Conclusion: The A. spinosa genome will be useful for assessing biodiversity leading to efficient conservation of this endangered endemic tree. Furthermore, the genome may enable genome-assisted cultivar breeding, and provide a better understanding of important metabolic pathways and their underlying genes for both cosmetic and pharmacological purposes.

September 21, 2019  |  

in silico Whole Genome Sequencer & Analyzer (iWGS): a computational pipeline to guide the design and analysis of de novo genome sequencing studies.

The availability of genomes across the tree of life is highly biased toward vertebrates, pathogens, human disease models, and organisms with relatively small and simple genomes. Recent progress in genomics has enabled the de novo decoding of the genome of virtually any organism, greatly expanding its potential for understanding the biology and evolution of the full spectrum of biodiversity. The increasing diversity of sequencing technologies, assays, and de novo assembly algorithms have augmented the complexity of de novo genome sequencing projects in non-model organisms. To reduce the costs and challenges in de novo genome sequencing projects and streamline their experimental design and analysis, we developed iWGS (in silico Whole Genome Sequencer and Analyzer), an automated pipeline for guiding the choice of appropriate sequencing strategy and assembly protocols. iWGS seamlessly integrates the four key steps of a de novo genome sequencing project: data generation (through simulation), data quality control, de novo assembly, and assembly evaluation and validation. The last three steps can also be applied to the analysis of real data. iWGS is designed to enable the user to have great flexibility in testing the range of experimental designs available for genome sequencing projects, and supports all major sequencing technologies and popular assembly tools. Three case studies illustrate how iWGS can guide the design of de novo genome sequencing projects and evaluate the performance of a wide variety of user-specified sequencing strategies and assembly protocols on genomes of differing architectures. iWGS, along with a detailed documentation, is freely available at https://github.com/zhouxiaofan1983/iWGS. Copyright © 2016 Author et al.

July 7, 2019  |  

Absence of genome reduction in diverse, facultative endohyphal bacteria.

Fungi interact closely with bacteria, both on the surfaces of the hyphae and within their living tissues (i.e. endohyphal bacteria, EHB). These EHB can be obligate or facultative symbionts and can mediate diverse phenotypic traits in their hosts. Although EHB have been observed in many lineages of fungi, it remains unclear how widespread and general these associations are, and whether there are unifying ecological and genomic features can be found across EHB strains as a whole. We cultured 11 bacterial strains after they emerged from the hyphae of diverse Ascomycota that were isolated as foliar endophytes of cupressaceous trees, and generated nearly complete genome sequences for all. Unlike the genomes of largely obligate EHB, the genomes of these facultative EHB resembled those of closely related strains isolated from environmental sources. Although all analysed genomes encoded structures that could be used to interact with eukaryotic hosts, pathways previously implicated in maintenance and establishment of EHB symbiosis were not universally present across all strains. Independent isolation of two nearly identical pairs of strains from different classes of fungi, coupled with recent experimental evidence, suggests horizontal transfer of EHB across endophytic hosts. Given the potential for EHB to influence fungal phenotypes, these genomes could shed light on the mechanisms of plant growth promotion or stress mitigation by fungal endophytes during the symbiotic phase, as well as degradation of plant material during the saprotrophic phase. As such, these findings contribute to the illumination of a new dimension of functional biodiversity in fungi.

July 7, 2019  |  

Complete genome sequence of Vibrio coralliilyticus 58, isolated from Pacific oyster (Crassostrea gigas) larvae.

We report here the complete genome of Vibrio coralliilyticus strain 58, which was originally isolated from inactive Pacific oyster (Crassostrea gigas) larvae in Japan. The assembled genome consisted of two chromosomes and one plasmid. These data will provide valuable information and important insights into the biodiversity of this organism. Copyright © 2017 Kim et al.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.