X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Complete genome of Pandoraea pnomenusa RB-38, an oxalotrophic bacterium isolated from municipal solid waste landfill site.

Pandoraea pnomenusa RB-38 is a bacterium isolated from a former sanitary landfill site. Here, we present the complete genome of P. pnomenusa RB38 in which an oxalate utilization pathway was identified. The genome analysis suggested the potential of this strain as an effective biocontrol agent against oxalate-producing phytopathogens. Copyright © 2015 Elsevier B.V. All rights reserved.

Read More »

Sunday, July 7, 2019

Near-complete genome sequence of the cellulolytic bacterium Bacteroides (Pseudobacteroides) cellulosolvens ATCC 35603.

We report the single-contig genome sequence of the anaerobic, mesophilic, cellulolytic bacterium, Bacteroides cellulosolvens. The bacterium produces a particularly elaborate cellulosome system, wherein the types of cohesin-dockerin interactions are opposite of other known cellulosome systems: cell-surface attachment is thus mediated via type-I interactions, whereas enzymes are integrated via type-II interactions. Copyright © 2015 Dassa et al.

Read More »

Sunday, July 7, 2019

Genome sequence of a native-feather degrading extremely thermophilic Eubacterium, Fervidobacterium islandicum AW-1.

Fervidobacterium islandicum AW-1 (KCTC 4680) is an extremely thermophilic anaerobe isolated from a hot spring in Indonesia. This bacterium could degrade native chicken feathers completely at 70 °C within 48 h, which is of potential importance on the basis of relevant environmental and agricultural issues in bioremediation and development of eco-friendly bioprocesses for the treatment of native feathers. However, its genomic and phylogenetic analysis remains unclear. Here, we report the high-quality draft genome sequence of an extremely thermophilic anaerobe, F. islandicum AW-1. The genome consists of 2,359,755 bp, which encodes 2,184 protein-coding genes and 64 RNA-encoding genes. This may reveal insights into anaerobic…

Read More »

Sunday, July 7, 2019

Complete genome sequence of Marinobacter sp. CP1, isolated from a self-regenerating biocathode biofilm.

Marinobacter sp. CP1 was isolated from a self-regenerating and self-sustaining biocathode biofilm that can fix CO2 and generate electric current. We present the complete genome sequence of this strain, which consists of a circular 4.8-Mbp chromosome, to understand the mechanism of extracellular electron transfer in a microbial consortium. Copyright © 2015 Wang et al.

Read More »

Sunday, July 7, 2019

Enzymatic degradation of phenazines can generate energy and protect sensitive organisms from toxicity.

Diverse bacteria, including several Pseudomonas species, produce a class of redox-active metabolites called phenazines that impact different cell types in nature and disease. Phenazines can affect microbial communities in both positive and negative ways, where their presence is correlated with decreased species richness and diversity. However, little is known about how the concentration of phenazines is modulated in situ and what this may mean for the fitness of members of the community. Through culturing of phenazine-degrading mycobacteria, genome sequencing, comparative genomics, and molecular analysis, we identified several conserved genes that are important for the degradation of three Pseudomonas-derived phenazines: phenazine-1-carboxylic…

Read More »

Sunday, July 7, 2019

Draft genome sequence of a nitrate-reducing, o-phthalate degrading bacterium, Azoarcus sp. strain PA01(T).

Azoarcus sp. strain PA01(T) belongs to the genus Azoarcus, of the family Rhodocyclaceae within the class Betaproteobacteria. It is a facultatively anaerobic, mesophilic, non-motile, Gram-stain negative, non-spore-forming, short rod-shaped bacterium that was isolated from a wastewater treatment plant in Constance, Germany. It is of interest because of its ability to degrade o-phthalate and a wide variety of aromatic compounds with nitrate as an electron acceptor. Elucidation of the o-phthalate degradation pathway may help to improve the treatment of phthalate-containing wastes in the future. Here, we describe the features of this organism, together with the draft genome sequence information and annotation.…

Read More »

Sunday, July 7, 2019

Genome sequence and description of the anaerobic lignin-degrading bacterium Tolumonas lignolytica sp. nov.

Tolumonas lignolytica BRL6-1(T) sp. nov. is the type strain of T. lignolytica sp. nov., a proposed novel species of the Tolumonas genus. This strain was isolated from tropical rainforest soils based on its ability to utilize lignin as a sole carbon source. Cells of Tolumonas lignolytica BRL6-1(T) are mesophilic, non-spore forming, Gram-negative rods that are oxidase and catalase negative. The genome for this isolate was sequenced and returned in seven unique contigs totaling 3.6Mbp, enabling the characterization of several putative pathways for lignin breakdown. Particularly, we found an extracellular peroxidase involved in lignin depolymerization, as well as several enzymes involved…

Read More »

Sunday, July 7, 2019

Complete genome sequence of Pandoraea oxalativorans DSM 23570(T), an oxalate metabolizing soil bacterium.

Pandoraea oxalativorans DSM 23570(T) is an oxalate-degrading bacterium that was originally isolated from soil litter near to oxalate-producing plant of the genus Oxalis. Here, we report the first complete genome of P. oxalativorans DSM 23570(T) which would allow its potential biotechnological applications to be unravelled. Copyright © 2016. Published by Elsevier B.V.

Read More »

Sunday, July 7, 2019

Quorum sensing activity of Aeromonas caviae strain YL12, a bacterium isolated from compost.

Quorum sensing is a well-studied cell-to-cell communication method that involves a cell-density dependent regulation of genes expression mediated by signalling molecules. In this study, a bacterium isolated from a plant material compost pile was found to possess quorum sensing activity based on bioassay screening. Isolate YL12 was identified using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and molecular typing using rpoD gene which identified the isolate as Aeromonas caviae. High resolution tandem mass spectrometry was subsequently employed to identify the N-acyl homoserine lactone profile of Aeromonas caviae YL12 and confirmed that this isolate produced two short chain N-acyl homoserine…

Read More »

Sunday, July 7, 2019

The oxygen-independent metabolism of cyclic monoterpenes in Castellaniella defragrans 65Phen.

The facultatively anaerobic betaproteobacterium Castellaniella defragrans 65Phen utilizes acyclic, monocyclic and bicyclic monoterpenes as sole carbon source under oxic as well as anoxic conditions. A biotransformation pathway of the acyclic ß-myrcene required linalool dehydratase-isomerase as initial enzyme acting on the hydrocarbon. An in-frame deletion mutant did not use myrcene, but was able to grow on monocyclic monoterpenes. The genome sequence and a comparative proteome analysis together with a random transposon mutagenesis were conducted to identify genes involved in the monocyclic monoterpene metabolism. Metabolites accumulating in cultures of transposon and in-frame deletion mutants disclosed the degradation pathway.Castellaniella defragrans 65Phen oxidizes the…

Read More »

Sunday, July 7, 2019

The complete genome sequence of Clostridium indolis DSM 755(T.).

Clostridium indolis DSM 755(T) is a bacterium commonly found in soils and the feces of birds and mammals. Despite its prevalence, little is known about the ecology or physiology of this species. However, close relatives, C. saccharolyticum and C. hathewayi, have demonstrated interesting metabolic potentials related to plant degradation and human health. The genome of C. indolis DSM 755(T) reveals an abundance of genes in functional groups associated with the transport and utilization of carbohydrates, as well as citrate, lactate, and aromatics. Ecologically relevant gene clusters related to nitrogen fixation and a unique type of bacterial microcompartment, the CoAT BMC,…

Read More »

Sunday, July 7, 2019

Complete genome sequence of the caprolactam-degrading bacterium Pseudomonas mosselii SJ10 isolated from wastewater of a nylon 6 production plant.

Pseudomonas mosselii strain SJ10 is a caprolactam-degrading bacterium belonging to the class Gammaproteobacteria, which was isolated from wastewater of the nylon 6 producing Seongseo industrial complex in Daegu, Republic of Korea. Here, we report the complete genome sequence of the strain, providing genetic information for biodegradation of aromatic compounds.

Read More »

Sunday, July 7, 2019

Complete genome sequence of the cyanide-degrading bacterium Pseudomonas pseudoalcaligenes CECT5344.

Pseudomonas pseudoalcaligenes CECT5344, a Gram-negative bacterium isolated from the Guadalquir River (Córdoba, Spain), is able to utilize different cyano-derivatives. Here, the complete genome sequence of P. pseudoalcaligenes CECT5344 harboring a 4,686,340bp circular chromosome encoding 4513 genes and featuring a GC-content of 62.34% is reported. Necessarily, remaining gaps in the genome had to be closed by assembly of few long reads obtained from PacBio single molecule real-time sequencing. Here, the first complete genome sequence for the species P. pseudoalcaligenes is presented. Copyright © 2014 Elsevier B.V. All rights reserved.

Read More »

Sunday, July 7, 2019

Genomics of wood-degrading fungi.

Woody plants convert the energy of the sun into lignocellulosic biomass, which is an abundant substrate for bioenergy production. Fungi, especially wood decayers from the class Agaricomycetes, have evolved ways to degrade lignocellulose into its monomeric constituents, and understanding this process may facilitate the development of biofuels. Over the past decade genomics has become a powerful tool to study the Agaricomycetes. In 2004 the first sequenced genome of the white rot fungus Phanerochaete chrysosporium revealed a rich catalog of lignocellulolytic enzymes. In the decade that followed the number of genomes of Agaricomycetes grew to more than 75 and revealed a…

Read More »

Sunday, July 7, 2019

Phylogenomically guided identification of industrially relevant GH1 ß-glucosidases through DNA synthesis and nanostructure-initiator mass spectrometry.

Harnessing the biotechnological potential of the large number of proteins available in sequence databases requires scalable methods for functional characterization. Here we propose a workflow to address this challenge by combining phylogenomic guided DNA synthesis with high-throughput mass spectrometry and apply it to the systematic characterization of GH1 ß-glucosidases, a family of enzymes necessary for biomass hydrolysis, an important step in the conversion of lignocellulosic feedstocks to fuels and chemicals. We synthesized and expressed 175 GH1s, selected from over 2000 candidate sequences to cover maximum sequence diversity. These enzymes were functionally characterized over a range of temperatures and pHs using…

Read More »

1 2 3 4 5 9

Subscribe for blog updates:

Archives