Menu
April 21, 2020  |  

Whole genome sequence of Auricularia heimuer (Basidiomycota, Fungi), the third most important cultivated mushroom worldwide.

Heimuer, Auricularia heimuer, is one of the most famous traditional Chinese foods and medicines, and it is the third most important cultivated mushroom worldwide. The aim of this study is to develop genomic resources for A. heimuer to furnish tools that can be used to study its secondary metabolite production capability, wood degradation ability and biosynthesis of polysaccharides. The genome was obtained from single spore mycelia of the strain Dai 13782 by using combined high-throughput Illumina HiSeq 4000 system with the PacBio RSII long-read sequencing platform. Functional annotation was accomplished by blasting protein sequences with different public available databases to obtain their corresponding annotations. It is 49.76Mb in size with a N50 scaffold size of 1,350,668bp and encodes 16,244 putative predicted genes. This is the first genome-scale assembly and annotation for A. heimuer, which is the third sequenced species in Auricularia. Copyright © 2018 Elsevier Inc. All rights reserved.


September 22, 2019  |  

Proteogenomic analysis reveals alternative splicing and translation as part of the abscisic acid response in Arabidopsis seedlings.

In eukaryotes, mechanisms such as alternative splicing (AS) and alternative translation initiation (ATI) contribute to organismal protein diversity. Specifically, splicing factors play crucial roles in responses to environment and development cues; however, the underlying mechanisms are not well investigated in plants. Here, we report the parallel employment of short-read RNA sequencing, single molecule long-read sequencing and proteomic identification to unravel AS isoforms and previously unannotated proteins in response to abscisic acid (ABA) treatment. Combining the data from the two sequencing methods, approximately 83.4% of intron-containing genes were alternatively spliced. Two AS types, which are referred to as alternative first exon (AFE) and alternative last exon (ALE), were more abundant than intron retention (IR); however, by contrast to AS events detected under normal conditions, differentially expressed AS isoforms were more likely to be translated. ABA extensively affects the AS pattern, indicated by the increasing number of non-conventional splicing sites. This work also identified thousands of unannotated peptides and proteins by ATI based on mass spectrometry and a virtual peptide library deduced from both strands of coding regions within the Arabidopsis genome. The results enhance our understanding of AS and alternative translation mechanisms under normal conditions, and in response to ABA treatment.© 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.


September 22, 2019  |  

A novel bacteriocin BMP11 and its antibacterial mechanism on cell envelope of Listeria monocytogenes and Cronobacter sakazakii

Listeria monocytogenes and Cronobacter sakazakii are notorious pathogens involved in numerous foodborne outbreaks after ingested contaminated food. Bacteriocins are natural food preservatives, some of which have antimicrobial activity comparable with antibiotics. In this study, a plasmid encoded novel bacteriocin BMP11 produced by Lactobacillus crustorum MN047 was innovatively identified by combining complete genome and LC-MS/MS. The BMP11 was found to have rich a-helix conformation after prediction. Moreover, the antimicrobial activity of BMP11 was verified after its heterologous expression in E. coli with 1280 and 640 AU/mL against L. monocytogenes and C. sakazakii, respectively. After purification by anion-exchange chromatography and HPLC, BMP11 had MIC values of 0.3–38.4?µg/mL against tested foodborne pathogens. Further, it was found that BMP11 had bactericidal action mode with concomitant cell lysis to pathogens by growth curve and time-kill kinetics. The results of scanning electron microscope (SEM) and transmission electron microscope (TEM) indicated that BMP11 destroyed the integrity of cell envelope of pathogens with cell wall perforation and cell membrane permeabilization. The destruction of cell envelope integrity was further verified by propidium iodide (PI) uptake and lactic dehydrogenase (LDH) release. BMP11 increased inner-membrane permeability of C. sakazakii in a concentration-dependent manner. Meanwhile, BMP11 exhibited antibiofilm formation activity. In addition, BMP11 inhibited the growth of L. monocytogenes in milk. Therefore, BMP11 had promising potential as antimicrobial to control foodborne pathogens in dairy products.


July 7, 2019  |  

Complete genome sequence of Lysinibacillus sphaericus LMG 22257, a strain with ureolytic activity inducing calcium carbonate precipitation.

Microbiologically induced calcium carbonate precipitation shows the potential for use in bioremediation and construction consolidation, but the efficiency of this process must be improved. Lysinibacillus sphaericus LMG 22257 is a gram-positive ureolytic strain that has recently been applied for consolidating construction by mediating calcium carbonate precipitation. The complete genome sequence of L. sphaericus LMG 22257 is 3,436,578 base pairs with a GC content of 38.99%. The urea degradation pathway and genes related to extracellular polymeric substance biosynthesis were also identified. The strain can tolerate high alkalinity (pH up to 10) and high urea concentration (up to 3M). These findings provide insights into the microbiologically induced carbonate precipitation and extend the application of the metabolic potential of L. sphaericus LMG 22257 for bioremediation. Copyright © 2017 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of a natural compounds producer, Streptomyces violaceus S21.

The complete genome sequence of Streptomyces violaceus strain S21, a valuable natural compounds producer isolated from the forest soil, is firstly presented here. The genome comprised 7.91M bp, with a G + C content of 72.65%. A range of genes involved in pathways of secondary product biosynthesis were predicted. The genome sequence is available at DDBJ/EMBL/Genbank under the accession number CP020570. This genome is annotated with 6856 predicted genes identifying the natural product biosynthetic gene clusters in S. violaceus.


July 7, 2019  |  

A large gene family in fission yeast encodes spore killers that subvert Mendel’s law.

Spore killers in fungi are selfish genetic elements that distort Mendelian segregation in their favor. It remains unclear how many species harbor them and how diverse their mechanisms are. Here, we discover two spore killers from a natural isolate of the fission yeast Schizosaccharomyces pombe. Both killers belong to the previously uncharacterized wtf gene family with 25 members in the reference genome. These two killers act in strain-background-independent and genome-location-independent manners to perturb the maturation of spores not inheriting them. Spores carrying one killer are protected from its killing effect but not that of the other killer. The killing and protecting activities can be uncoupled by mutation. The numbers and sequences of wtf genes vary considerably between S. pombe isolates, indicating rapid divergence. We propose that wtf genes contribute to the extensive intraspecific reproductive isolation in S. pombe, and represent ideal models for understanding how segregation-distorting elements act and evolve.


July 7, 2019  |  

Complete genome sequences of Aerococcus christensenii CCUG 28831T, Aerococcus sanguinicola CCUG 43001T, Aerococcus urinae CCUG 36881T, Aerococcus urinaeequi CCUG 28094T, Aerococcus urinaehominis CCUG 42038 BT, and Aerococcus viridans CCUG 4311T.

Strains belonging to the genus Aerococcusare causative agents of human and animal infections, including urogenital infections, bacteremia/septicemia, and infective endocarditis. This study reports the first fully closed and complete genome sequences of six type strains belonging to the genus Aerococcususing a combination of Illumina HiSeq and PacBio sequencing technologies. Copyright © 2016 Carkaci et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.