X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, September 22, 2019

Comparison of highly and weakly virulent Dickeya solani strains, with a view on the pangenome and panregulon of this species.

Bacteria belonging to the genera Dickeya and Pectobacterium are responsible for significant economic losses in a wide variety of crops and ornamentals. During last years, increasing losses in potato production have been attributed to the appearance of Dickeya solani. The D. solani strains investigated so far share genetic homogeneity, although different virulence levels were observed among strains of various origins. The purpose of this study was to investigate the genetic traits possibly related to the diverse virulence levels by means of comparative genomics. First, we developed a new genome assembly pipeline which allowed us to complete the D. solani genomes.…

Read More »

Sunday, September 22, 2019

Production of glycine-derived ammonia as a low-cost and long-distance antibiotic strategy by Streptomyces

Soil-inhabiting streptomycetes are Natures medicine makers, producing over half of all known antibiotics and many other bioactive natural products. However, these bacteria also produce many volatile compounds, and research into these molecules and their role in soil ecology is rapidly gaining momentum. Here we show that streptomycetes have the ability to kill bacteria over long distances via air-borne antibiosis. Our research shows that streptomycetes do so by producing surprisingly high amounts of the low-cost volatile antimicrobial ammonia, which travels over long distances and antagonises both Gram-positive and Gram-negative bacteria. Glycine is required as precursor to produce ammonia, and inactivation of…

Read More »

Sunday, September 22, 2019

Stress-induced formation of cell wall-deficient cells in filamentous actinomycetes.

The cell wall is a shape-defining structure that envelopes almost all bacteria and protects them from environmental stresses. Bacteria can be forced to grow without a cell wall under certain conditions that interfere with cell wall synthesis, but the relevance of these wall-less cells (known as L-forms) is unclear. Here, we show that several species of filamentous actinomycetes have a natural ability to generate wall-deficient cells in response to hyperosmotic stress, which we call S-cells. This wall-deficient state is transient, as S-cells are able to switch to the normal mycelial mode of growth. However, prolonged exposure of S-cells to hyperosmotic…

Read More »

Sunday, July 7, 2019

Complete genome sequence of the Clostridium difficile laboratory strain 630¿ erm reveals differences from strain 630, including translocation of the mobile element CTn 5.

Background Clostridium difficile strain 630¿erm is a spontaneous erythromycin sensitive derivative of the reference strain 630 obtained by serial passaging in antibiotic-free media. It is widely used as a defined and tractable C. difficile strain. Though largely similar to the ancestral strain, it demonstrates phenotypic differences that might be the result of underlying genetic changes. Here, we performed a de novo assembly based on single-molecule real-time sequencing and an analysis of major methylation patterns.ResultsIn addition to single nucleotide polymorphisms and various indels, we found that the mobile element CTn5 is present in the gene encoding the methyltransferase rumA rather than…

Read More »

Sunday, July 7, 2019

Whole-genome mapping as a novel high-resolution typing tool for Legionella pneumophila.

Legionella is the causative agent for Legionnaires’ disease (LD) and is responsible for several large outbreaks in the world. More than 90% of LD cases are caused by Legionella pneumophila, and studies on the origin and transmission routes of this pathogen rely on adequate molecular characterization of isolates. Current typing of L. pneumophila mainly depends on sequence-based typing (SBT). However, studies have shown that in some outbreak situations, SBT does not have sufficient discriminatory power to distinguish between related and nonrelated L. pneumophila isolates. In this study, we used a novel high-resolution typing technique, called whole-genome mapping (WGM), to differentiate…

Read More »

Sunday, July 7, 2019

The genome of the Saprophytic fungus Verticillium tricorpus reveals a complex effector repertoire resembling that of its pathogenic relatives.

Vascular wilts caused by Verticillium spp. are destructive plant diseases affecting hundreds of hosts. Only a few Verticillium spp. are causal agents of vascular wilt diseases, of which V. dahliae is the most notorious pathogen, and several V. dahliae genomes are available. In contrast, V. tricorpus is mainly known as a saprophyte and causal agent of opportunistic infections. Based on a hybrid approach that combines second and third generation sequencing, a near-gapless V. tricorpus genome assembly was obtained. With comparative genomics, we sought to identify genomic features in V. dahliae that confer the ability to cause vascular wilt disease. Unexpectedly,…

Read More »

Sunday, July 7, 2019

Metabolomics-driven discovery of a prenylated isatin antibiotic produced by Streptomyces species MBT28.

Actinomycetes are a major source of antimicrobials, anticancer compounds, and other medically important products, and their genomes harbor extensive biosynthetic potential. Major challenges in the screening of these microorganisms are to activate the expression of cryptic biosynthetic gene clusters and the development of technologies for efficient dereplication of known molecules. Here we report the identification of a previously unidentified isatin-type antibiotic produced by Streptomyces sp. MBT28, following a strategy based on NMR-based metabolomics combined with the introduction of streptomycin resistance in the producer strain. NMR-guided isolation by tracking the target proton signal resulted in the characterization of 7-prenylisatin (1) with…

Read More »

Sunday, July 7, 2019

Genome sequence of Pseudomonas sp. strain P482, a tomato rhizosphere isolate with broad-spectrum antimicrobial activity.

The tomato rhizosphere isolate Pseudomonas sp. strain P482 is a member of a diverse group of fluorescent pseudomonads. P482 produces a yet unidentified broad-spectrum antimicrobial compound(s), active inter alia (i.a.) against Dickeya spp. Here, we present a nearly complete genome of P482 obtained by a hybrid assembly of Illumina and PacBio sequencing data. Copyright © 2014 Krzyzanowska et al.

Read More »

Sunday, July 7, 2019

Genome sequence of Ensifer adhaerens OV14 provides insights into its ability as a novel vector for the genetic transformation of plant genomes.

Recently it has been shown that Ensifer adhaerens can be used as a plant transformation technology, transferring genes into several plant genomes when equipped with a Ti plasmid. For this study, we have sequenced the genome of Ensifer adhaerens OV14 (OV14) and compared it with those of Agrobacterium tumefaciens C58 (C58) and Sinorhizobium meliloti 1021 (1021); the latter of which has also demonstrated a capacity to genetically transform crop genomes, albeit at significantly reduced frequencies.The 7.7 Mb OV14 genome comprises two chromosomes and two plasmids. All protein coding regions in the OV14 genome were functionally grouped based on an eggNOG…

Read More »

Sunday, July 7, 2019

SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information.

The recent introduction of the Pacific Biosciences RS single molecule sequencing technology has opened new doors to scaffolding genome assemblies in a cost-effective manner. The long read sequence information is promised to enhance the quality of incomplete and inaccurate draft assemblies constructed from Next Generation Sequencing (NGS) data.Here we propose a novel hybrid assembly methodology that aims to scaffold pre-assembled contigs in an iterative manner using PacBio RS long read information as a backbone. On a test set comprising six bacterial draft genomes, assembled using either a single Illumina MiSeq or Roche 454 library, we show that even a 50×…

Read More »

Sunday, July 7, 2019

Complete genome sequence of the sugar cane endophyte Pseudomonas aurantiaca PB-St2, a disease-suppressive bacterium with antifungal activity toward the plant pathogen Colletotrichum falcatum.

The endophytic bacterium Pseudomonas aurantiaca PB-St2 exhibits antifungal activity and represents a biocontrol agent to suppress red rot disease of sugar cane. Here, we report the completely sequenced 6.6-Mb genome of P. aurantiaca PB-St2. The sequence contains a repertoire of biosynthetic genes for secondary metabolites that putatively contribute to its antagonistic activity and its plant-microbe interactions.

Read More »

Sunday, July 7, 2019

Detecting authorized and unauthorized genetically modified organisms containing vip3A by real-time PCR and next-generation sequencing.

The growing number of biotech crops with novel genetic elements increasingly complicates the detection of genetically modified organisms (GMOs) in food and feed samples using conventional screening methods. Unauthorized GMOs (UGMOs) in food and feed are currently identified through combining GMO element screening with sequencing the DNA flanking these elements. In this study, a specific and sensitive qPCR assay was developed for vip3A element detection based on the vip3Aa20 coding sequences of the recently marketed MIR162 maize and COT102 cotton. Furthermore, SiteFinding-PCR in combination with Sanger, Illumina or Pacific BioSciences (PacBio) sequencing was performed targeting the flanking DNA of the…

Read More »

Sunday, July 7, 2019

The genome sequence of Streptomyces lividans 66 reveals a novel tRNA-dependent peptide biosynthetic system within a metal-related genomic island.

The complete genome sequence of the original isolate of the model actinomycete Streptomyces lividans 66, also referred to as 1326, was deciphered after a combination of next-generation sequencing platforms and a hybrid assembly pipeline. Comparative analysis of the genomes of S. lividans 66 and closely related strains, including S. coelicolor M145 and S. lividans TK24, was used to identify strain-specific genes. The genetic diversity identified included a large genomic island with a mosaic structure, present in S. lividans 66 but not in the strain TK24. Sequence analyses showed that this genomic island has an anomalous (G + C) content, suggesting…

Read More »

Sunday, July 7, 2019

Genome sequence of the filamentous actinomycete Kitasatospora viridifaciens.

The vast majority of antibiotics are produced by filamentous soil bacteria called actinomycetes. We report here the genome sequence of the tetracycline producer “Streptomyces viridifaciens” DSM 40239. Given that this species has the hallmark signatures characteristic of the Kitasatospora genus, we previously proposed to rename this organism Kitasatospora viridifaciens. Copyright © 2017 Ramijan et al.

Read More »

1 2

Subscribe for blog updates:

Archives

Press Release

Pacific Biosciences Announces New Chief Financial Officer

Monday, September 14, 2020

Stay
Current

Visit our blog »