July 7, 2019  |  

Deciphering mixotrophic Clostridium formicoaceticum metabolism and energy conservation: Genomic analysis and experimental studies.

Clostridium formicoaceticum, a Gram-negative mixotrophic homoacetogen, produces acetic acid as the sole metabolic product from various carbon sources, including fructose, glycerol, formate, and CO2. Its genome of 4.59-Mbp contains a highly conserved Wood-Ljungdahl pathway gene cluster with the same layout as that in other mixotrophic acetogens, including Clostridium aceticum, Clostridium carboxidivorans, and Clostridium ljungdahlii. For energy conservation, C. formicoaceticum does not have all the genes required for the synthesis of cytochrome or quinone used for generating proton gradient in H+-dependent acetogens such as Moorella thermoacetica; instead, it has the Rnf system and a Na+-translocating ATPase similar to the one in Acetobacterium woodii. Its growth in both heterotrophic and autotrophic media were dependent on the sodium concentration. C. formicoaceticum has genes encoding acetaldehyde dehydrogenases, alcohol dehydrogenases, and aldehyde oxidoreductases, which could convert acetyl-CoA and acetate to ethanol and butyrate to butanol under excessive reducing equivalent conditions. Copyright © 2018 Elsevier Inc. All rights reserved.


July 7, 2019  |  

Whole-genome sequencing of an NDM-1- and OXA-58-producing Acinetobacter towneri isolate from hospital sewage in Sichuan Province, China.

Acinetobacter spp. isolates carrying the blaNDM-1 gene are frequently reported. However, most reported blaNDM-1 genes are carried by clinical strains. Here we report a carbapenem-resistant Acinetobacter towneri isolate from hospital sewage in China co-harbouring blaNDM-1 and blaOXA-58 in the genome.Whole-genome sequencing was performed using a single molecule, real-time (SMRT) sequencing platform with a Pacific Biosciences RS II Sequencer and MiSeq system. Reads were de novo assembled using Celera Assembler v.8.0. Genome annotation was performed using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP), and the genome sequence was analysed by bioinformatics methods.The 2963729-bp genome with a G+C content of 41.30% displayed 11 antimicrobial resistance genes, including blaNDM-1 and blaOXA-58. Meanwhile, 2 plasmids and 19 genomic islands were predicted within the genome.The whole-genome sequence reported here can be compared with other genomes of NDM-1-producing Acinetobacter spp. These data could facilitate further understanding of the specific genomic features of carbapenem-resistant Acinetobacter spp. in China. Copyright © 2018 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.


July 7, 2019  |  

Methanogenic and bacterial endosymbionts of free-living anaerobic ciliates

Trimyema compressum thrives in anoxic freshwater environments in which it preys on bacteria and grows with fermentative metabolisms. Like many anaerobic protozoa, instead of mitochondria, T. compressum possess hydrogenosomes, which are hydrogen-producing, energy-generating organelles characteristic of anaerobic protozoa and fungi. The cytoplasm of T. compressum harbours hydrogenotrophic methanogens that consume the hydrogen produced by hydrogenosome, which confers an energetic advantage to the host ciliate. Symbiotic associations between methanogenic archaea and Trimyema ciliates are thought to be established independently and/or repeatedly in their evolutional history. In addition to methanogenic symbionts, T. compressum houses bacterial symbiont TC1 whose function is unknown in its cytoplasm. Recently, we analysed whole-genome sequence of TC1 symbiont to investigate its physiological function in the tripartite symbiosis and found that fatty acid synthesis fab operon of TC1 symbiont lacked typical transcriptional repressor, which is normally coded on the upstream of the fab operon. The sequence data suggested that TC1 symbiont contributes to host Trimyema by the synthesis of fatty acid or its derivative. In this review, we summarize the early works and recent progress of the studies on Trimyema ciliates, including a stably cultivable model protozoa T. compressum, and discuss about symbiotic associations in oxygen-scarce environments.


July 7, 2019  |  

Complete genome sequence of Streptacidiphilus sp. strain 15-057A, obtained from bronchial lavage fluid.

Streptacidiphilus sp. strain 15-057A was isolated from a bronchial lavage sample and represents the only member of the genus not isolated from acidic soils. A single circular chromosome of 7.01?Mb was obtained by combining Illumina and PacBio sequencing data. Bioinformatic analysis detected 63 putative secondary biosynthetic gene clusters and recognized 43 transposons.


July 7, 2019  |  

Complete genome sequence of Sulfitobacter sp. strain D7, a virulent bacterium isolated from an Emiliania huxleyi algal bloom in the North Atlantic.

A Rhodobacterales bacterium, Sulfitobacter sp. strain D7, was isolated from an Emiliania huxleyi bloom in the North Atlantic and has been shown to act as a pathogen and induce cell death of E. huxleyi during lab coculturing. We report here its complete genome sequence comprising one chromosome and five low-copy-number plasmids.


July 7, 2019  |  

BELLA: Berkeley Efficient Long-Read to Long-Read Aligner and Overlapper

De novo assembly is the process of reconstructing genomes from DNA fragments (reads), which may contain redundancy and errors. Longer reads simplify assembly and improve contiguity of the output, but current long-read technologies come with high error rates. A crucial step of de novo genome assembly for long reads consists of finding overlapping reads. We present Berkeley Long-Read to Long-Read Aligner and Overlapper (BELLA), which implement a novel approach to compute overlaps using Sparse Generalized Matrix Multiplication (SpGEMM). We present a probabilistic model which demonstrates the soundness of using short, fixed length k-mers to detect overlaps, avoiding expensive pairwise alignment of all reads against all others. We then introduce a notion of reliable k-mers based on our probabilistic model. The use of reliable k-mers eliminates both the k-mer set explosion that would otherwise happen with highly erroneous reads and the spurious overlaps due to k-mers originating from repetitive regions. Finally, we present a new method to separate true alignments from false positives depending on the alignment score. Using this methodology, which is employed in BELLAtextquoterights precise mode, the probability of false positives drops exponentially as the length of overlap between sequences increases. On simulated data, BELLA achieves an average of 2.26% higher recall than state-of-the-art tools in its sensitive mode and 18.90% higher precision than state-of-the-art tools in its precise mode, while being performance competitive.


July 7, 2019  |  

Genomics and biochemistry investigation on the metabolic pathway of milled wood and alkali lignin-derived aromatic metabolites of Comamonas serinivorans SP-35.

The efficient depolymerization and utilization of lignin are one of the most important goals for the renewable use of lignocelluloses. The degradation and complete mineralization of lignin by bacteria represent a key step for carbon recycling in land ecosystems as well. However, many aspects of this process remain unclear, for example, the complex network of metabolic pathways involved in the degradation of lignin and the catabolic pathway of intermediate aromatic metabolites. To address these subjects, we characterized the deconstruction and mineralization of lignin with milled wood lignin (MWL, the most representative molecule of lignin in its native state) and alkali lignin (AL), and elucidated metabolic pathways of their intermediate metabolites by a bacterium named Comamonas serinivorans SP-35.The degradation rate of MWL reached 30.9%, and its particle size range was decreased from 6 to 30 µm to 2-4 µm-when cultured with C. serinivorans SP35 over 7 days. FTIR analysis showed that the C-C and C-O-C bonds between the phenyl propane structures of lignin were oxidized and cleaved and the side chain structure was modified. More than twenty intermediate aromatic metabolites were identified in the MWL and AL cultures based on GC-MS analysis. Through genome sequencing and annotation, and from GC-MS analysis, 93 genes encoding 33 enzymes and 5 regulatory factors that may be involved in lignin degradation were identified and more than nine metabolic pathways of lignin and its intermediates were predicted. Of particular note is that the metabolic pathway to form the powerful antioxidant 3,4-dihydroxyphenylglycol is described for the first time in bacteria.Elucidation of the ß-aryl ether cleavage pathway in the strain SP-35 indicates that the ß-aryl ether catabolic system is not only present in the family of Sphingomonadaceae, but also other species of bacteria kingdom. These newly elucidated catabolic pathways of lignin in strain SP-35 and the enzymes responsible for them provide exciting biotechnological opportunities for lignin valorization in future.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.