X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Complete genome sequences for 35 biothreat assay-relevant bacillus species.

In 2011, the Association of Analytical Communities (AOAC) International released a list of Bacillus strains relevant to biothreat molecular detection assays. We present the complete and annotated genome assemblies for the 15 strains listed on the inclusivity panel, as well as the 20 strains listed on the exclusivity panel. Copyright © 2015 Johnson et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence analysis of Bacillus subtilis T30.

The complete genome sequence of Bacillus subtilis T30 was determined by SMRT sequencing. The entire genome contains 4,138 predicted genes. The genome carries one intact prophage sequence (37.4 kb) similar to Bacillus phage SPBc2 and one incomplete prophage genome of 39.9 kb similar to Bacillus phage phi105. Copyright © 2015 Xu et al.

Read More »

Sunday, July 7, 2019

Complete genome of Jeotgalibacillus malaysiensis D5(T) consisting of a chromosome and a circular megaplasmid.

Jeotgalibacillus spp. are halophilic bacteria within the family Planococcaceae. No genomes of Jeotgalibacillus spp. have been reported to date, and their metabolic pathways are unknown. How the bacteria survive in hypertonic conditions such as seawater is yet to be discovered. As only few studies have been conducted on Jeotgalibacillus spp., potential applications of these bacteria are unknown. Here, we present the complete genome of J. malaysiensis D5(T) (=DSM 28777(T) =KCTC 33350(T)), which is invaluable in identifying interesting applications for this genus. Copyright © 2015 Elsevier B.V. All rights reserved.

Read More »

Sunday, July 7, 2019

Draft genome sequence of a natural root isolate, Bacillus subtilis UD1022, a potential plant growth-promoting biocontrol agent.

Bacillus subtilis, which belongs to the phylum Firmicutes, is the most widely studied Gram-positive model organism. It is found in a wide variety of environments and is particularly abundant in soils and in the gastrointestinal tracts of ruminants and humans. Here, we present the complete genome sequence of the newly described B. subtilis strain UD1022. The UD1022 genome consists of a 4.025-Mbp chromosome, and other major findings from our analysis will provide insights into the genomic basis of it being a plant growth-promoting rhizobacterium (PGPR) with biocontrol potential. Copyright © 2015 Bishnoi et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Bacillus thuringiensis YC-10, a novel active strain against plant-parasitic nematodes.

Bacillus thuringiensis is an important microbial biopesticide for controlling agricultural pests by the production of toxic parasporal crystals proteins.Here,we report the finished annotated genome sequence of B. thuringiensis YC-10,which is highly toxic to nematodes.The complete genome sequence consists of a circular chromosome and nine circular plasmids,which the biggest plasmid harbors six parasporal crystals proteins genes consisting of cry1Aa, cry1Ac, cry1Ia, cry2Aa, cry2Ab and cryB1. The crystals proteins of Cry1Ia and Cry1Aa have high nematicidal activity against Meloidogyne incognita. Copyright © 2015 Elsevier B.V. All rights reserved.

Read More »

Sunday, July 7, 2019

Common cell shape evolution of two nasopharyngeal pathogens.

Respiratory infectious diseases are the third cause of worldwide death. The nasopharynx is the portal of entry and the ecological niche of many microorganisms, of which some are pathogenic to humans, such as Neisseria meningitidis and Moraxella catarrhalis. These microbes possess several surface structures that interact with the actors of the innate immune system. In our attempt to understand the past evolution of these bacteria and their adaption to the nasopharynx, we first studied differences in cell wall structure, one of the strongest immune-modulators. We were able to show that a modification of peptidoglycan (PG) composition (increased proportion of pentapeptides)…

Read More »

Sunday, July 7, 2019

Genome sequence of Bacillus endophyticus and analysis of its companion mechanism in the Ketogulonigenium vulgare-Bacillus strain consortium.

Bacillus strains have been widely used as the companion strain of Ketogulonigenium vulgare in the process of vitamin C fermentation. Different Bacillus strains generate different effects on the growth of K. vulgare and ultimately influence the productivity. First, we identified that Bacillus endophyticus Hbe603 was an appropriate strain to cooperate with K. vulgare and the product conversion rate exceeded 90% in industrial vitamin C fermentation. Here, we report the genome sequencing of the B. endophyticus Hbe603 industrial companion strain and speculate its possible advantage in the consortium. The circular chromosome of B. endophyticus Hbe603 has a size of 4.87 Mb…

Read More »

Sunday, July 7, 2019

Complete genome sequence of Bacillus thuringiensis HS18-1.

Bacillus thuringiensis is a spore-forming bacterium that is a type of insect pathogen used in the field of microbial insect control. B. thuringiensis HS18-1 has effective toxicity for Lepidoptera and Diptera insects. It contains different types of parasporal crystal genes, including cry4Cb1, cry50Aa1, cry69Ab1, cry30Ga, cry30Ea, cry70Aa, cry71Aa, cry72Aa, cry56Aa and cry54Ba. Here, we report the complete genome sequence of B. thuringiensis HS18-1, which contains one circular gapless chromosome and nine circular plasmids. Copyright © 2015. Published by Elsevier B.V.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Bacillus cereus FORC_005, a food-borne pathogen from the soy sauce braised fish-cake with quail-egg.

Due to abundant contamination in various foods, the pathogenesis of Bacillus cereus has been widely studied in physiological and molecular level. B. cereus FORC_005 was isolated from a Korean side dish, soy sauce braised fish-cake with quail-egg in South Korea. While 21 complete genome sequences of B. cereus has been announced to date, this strain was completely sequenced, analyzed, and compared with other complete genome sequences of B. cereus to elucidate the distinct pathogenic features of a strain isolated in South Korea. The genomic DNA containing a circular chromosome consists of 5,349,617-bp with a GC content of 35.29 %. It was…

Read More »

Sunday, July 7, 2019

Complete genome sequence of the molybdenum-resistant bacterium Bacillus subtilis strain LM 4-2.

Bacillus subtilis LM 4-2, a Gram-positive bacterium was isolated from a molybdenum mine in Luoyang city. Due to its strong resistance to molybdate and potential utilization in bioremediation of molybdate-polluted area, we describe the features of this organism, as well as its complete genome sequence and annotation. The genome was composed of a circular 4,069,266 bp chromosome with average GC content of 43.83 %, which included 4149 predicted ORFs and 116 RNA genes. Additionally, 687 transporter-coding and 116 redox protein-coding genes were identified in the strain LM 4-2 genome.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Bacillus methylotrophicus JJ-D34 isolated from deonjang, a Korean traditional fermented soybean paste.

Bacillus methylotrophicus JJ-D34 showing good proteolytic and antipathogenic activities was isolated from doenjang, a Korean traditional fermented soybean paste. Here, we report the complete genome sequence of strain JJ-D34 harboring a 4,105,955bp circular chromosome encoding 4044 genes with a 46.24% G+C content, which will provide insights into the genomic basis of its effects and facilitating its application to doenjang fermentation. Copyright © 2015 Elsevier B.V. All rights reserved.

Read More »

Sunday, July 7, 2019

The complete genome sequence of Bacillus thuringiensis serovar Hailuosis YWC2-8.

Bacillus thuringiensis, a typical aerobic, Gram-positive, spore-forming bacterium, is an important microbial insecticide widely used in the control of agricultural pests. B. thuringiensis serovar Hailuosis YWC2-8 with high insecticidal activity against Diptera and Lepidoptera insects has three insecticidal crystal protein genes, such as cry4Cb2, cry30Ea2, and cry56Aa1. In this study, the complete genome sequence of B. thuringiensis YWC2-8 was analyzed, which contains one circular gapless chromosome and six circular plasmids. Copyright © 2015. Published by Elsevier B.V.

Read More »

Sunday, July 7, 2019

Genomic insights into the taxonomic status of the three subspecies of Bacillus subtilis.

Bacillus subtilis contains three subspecies, i.e., subspecies subtilis, spizizenii, and inaquosorum. As these subspecies are phenotypically indistinguishable, their differentiation has relied on phylogenetic analysis of multiple protein-coding gene sequences. B. subtilis subsp. inaquosorum is a recently proposed taxon that encompasses strain KCTC 13429(T) and related strains, which were previously classified as members of subspecies spizizenii. However, DNA-DNA hybridization (DDH) values among the three subspecies raised a question as to their independence. Thus, we evaluated the taxonomic status of subspecies inaquosorum using genome-based comparative analysis. In contrast to the previous experimental values of DDH, the inter-genomic relatedness inferred by average nucleotide…

Read More »

1 2 3 4 6

Subscribe for blog updates:

Archives