Menu
July 19, 2019  |  

A diamond in the ruff.

Reference genomes are only as valuable as the scientific questions they can address. The ruff genome sequence papers exemplify three of the most important aspects of a useful genome: new biological insights, a high-quality resource and population variation data.


July 19, 2019  |  

A new chicken genome assembly provides insight into avian genome structure.

The importance of the Gallus gallus (chicken) as a model organism and agricultural animal merits a continuation of sequence assembly improvement efforts. We present a new version of the chicken genome assembly (Gallus_gallus-5.0; GCA_000002315.3), built from combined long single molecule sequencing technology, finished BACs, and improved physical maps. In overall assembled bases, we see a gain of 183 Mb, including 16.4 Mb in placed chromosomes with a corresponding gain in the percentage of intact repeat elements characterized. Of the 1.21 Gb genome, we include three previously missing autosomes, GGA30, 31, and 33, and improve sequence contig length 10-fold over the previous Gallus_gallus-4.0. Despite the significant base representation improvements made, 138 Mb of sequence is not yet located to chromosomes. When annotated for gene content, Gallus_gallus-5.0 shows an increase of 4679 annotated genes (2768 noncoding and 1911 protein-coding) over those in Gallus_gallus-4.0. We also revisited the question of what genes are missing in the avian lineage, as assessed by the highest quality avian genome assembly to date, and found that a large fraction of the original set of missing genes are still absent in sequenced bird species. Finally, our new data support a detailed map of MHC-B, encompassing two segments: one with a highly stable gene copy number and another in which the gene copy number is highly variable. The chicken model has been a critical resource for many other fields of study, and this new reference assembly will substantially further these efforts. Copyright © 2017 Warren et al.


July 19, 2019  |  

New technologies boost genome quality.

Three years ago, Erich Jarvis helped mastermind a massive DNA sequenc- ing effort that netted genomes for more than 40 bird species and produced a better avian family tree. But when he tried to compare the avian genomes to those of other species to learn about the evolution and function of several key brain genes, he was stymied. His team found that gene sequences from most of the comparison species—even humans—were incomplete, missing, or misplaced in the larger genome. The group had to resequence sections of sev- eral genomes to get the needed data, delaying their project many months.


July 19, 2019  |  

De novo PacBio long-read and phased avian genome assemblies correct and add to reference genes generated with intermediate and short reads.

Reference-quality genomes are expected to provide a resource for studying gene structure, function, and evolution. However, often genes of interest are not completely or accurately assembled, leading to unknown errors in analyses or additional cloning efforts for the correct sequences. A promising solution is long-read sequencing. Here we tested PacBio-based long-read sequencing and diploid assembly for potential improvements to the Sanger-based intermediate-read zebra finch reference and Illumina-based short-read Anna’s hummingbird reference, 2 vocal learning avian species widely studied in neuroscience and genomics. With DNA of the same individuals used to generate the reference genomes, we generated diploid assemblies with the FALCON-Unzip assembler, resulting in contigs with no gaps in the megabase range, representing 150-fold and 200-fold improvements over the current zebra finch and hummingbird references, respectively. These long-read and phased assemblies corrected and resolved what we discovered to be numerous misassemblies in the references, including missing sequences in gaps, erroneous sequences flanking gaps, base call errors in difficult-to-sequence regions, complex repeat structure errors, and allelic differences between the 2 haplotypes. These improvements were validated by single long-genome and transcriptome reads and resulted for the first time in completely resolved protein-coding genes widely studied in neuroscience and specialized in vocal learning species. These findings demonstrate the impact of long reads, sequencing of previously difficult-to-sequence regions, and phasing of haplotypes on generating the high-quality assemblies necessary for understanding gene structure, function, and evolution.© The Authors 2017. Published by Oxford University Press.


July 19, 2019  |  

A high-quality, long-read de novo genome assembly to aid conservation of Hawaii’s last remaining crow species

Genome-level data can provide researchers with unprecedented precision to examine the causes and genetic consequences of population declines, which can inform conservation management. Here, we present a high-quality, long-read, de novo genome assembly for one of the world’s most endangered bird species, the ?Alala (Corvus hawaiiensis; Hawaiian crow). As the only remaining native crow species in Hawai?i, the ?Alala survived solely in a captive-breeding program from 2002 until 2016, at which point a long-term reintroduction program was initiated. The high-quality genome assembly was generated to lay the foundation for both comparative genomics studies and the development of population-level genomic tools that will aid conservation and recovery efforts. We illustrate how the quality of this assembly places it amongst the very best avian genomes assembled to date, comparable to intensively studied model systems. We describe the genome architecture in terms of repetitive elements and runs of homozygosity, and we show that compared with more outbred species, the ?Alala genome is substantially more homozygous. We also provide annotations for a subset of immunity genes that are likely to be important in conservation management, and we discuss how this genome is currently being used as a roadmap for downstream conservation applications.


July 7, 2019  |  

Genome analysis of Staphylococcus agnetis, an agent of lameness in broiler chickens.

Lameness in broiler chickens is a significant animal welfare and financial issue. Lameness can be enhanced by rearing young broilers on wire flooring. We have identified Staphylococcus agnetis as significantly involved in bacterial chondronecrosis with osteomyelitis (BCO) in proximal tibia and femorae, leading to lameness in broiler chickens in the wire floor system. Administration of S. agnetis in water induces lameness. Previously reported in some cases of cattle mastitis, this is the first report of this poorly described pathogen in chickens. We used long and short read next generation sequencing to assemble single finished contigs for the genome and a large plasmid from the chicken pathogen. Comparison of the S. agnetis genome to those of other pathogenic Staphylococci shows that S.agnetis contains a distinct repertoire of virulence determinants. Additionally, the S. agnetis genome has several regions that differ substantially from the genomes of other pathogenic Staphylococci. Comparison of our finished genome to a recent draft genome for a cattle mastitis isolate suggests that future investigations focus on the evolutionary epidemiology of this emerging pathogen of domestic animals.


July 7, 2019  |  

High-coverage sequencing and annotated assemblies of the budgerigar genome.

Parrots belong to a group of behaviorally advanced vertebrates and have an advanced ability of vocal learning relative to other vocal-learning birds. They can imitate human speech, synchronize their body movements to a rhythmic beat, and understand complex concepts of referential meaning to sounds. However, little is known about the genetics of these traits. Elucidating the genetic bases would require whole genome sequencing and a robust assembly of a parrot genome.We present a genomic resource for the budgerigar, an Australian Parakeet (Melopsittacus undulatus) — the most widely studied parrot species in neuroscience and behavior. We present genomic sequence data that includes over 300× raw read coverage from multiple sequencing technologies and chromosome optical maps from a single male animal. The reads and optical maps were used to create three hybrid assemblies representing some of the largest genomic scaffolds to date for a bird; two of which were annotated based on similarities to reference sets of non-redundant human, zebra finch and chicken proteins, and budgerigar transcriptome sequence assemblies. The sequence reads for this project were in part generated and used for both the Assemblathon 2 competition and the first de novo assembly of a giga-scale vertebrate genome utilizing PacBio single-molecule sequencing.Across several quality metrics, these budgerigar assemblies are comparable to or better than the chicken and zebra finch genome assemblies built from traditional Sanger sequencing reads, and are sufficient to analyze regions that are difficult to sequence and assemble, including those not yet assembled in prior bird genomes, and promoter regions of genes differentially regulated in vocal learning brain regions. This work provides valuable data and material for genome technology development and for investigating the genomics of complex behavioral traits.


July 7, 2019  |  

Comparative genomics reveals insights into avian genome evolution and adaptation.

Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. Copyright © 2014, American Association for the Advancement of Science.


July 7, 2019  |  

Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species.

The process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, acceptance of newer read technologies) and in their final output (composition of assembled sequence). More importantly, it remains largely unclear how to best assess the quality of assembled genome sequences. The Assemblathon competitions are intended to assess current state-of-the-art methods in genome assembly.In Assemblathon 2, we provided a variety of sequence data to be assembled for three vertebrate species (a bird, a fish, and snake). This resulted in a total of 43 submitted assemblies from 21 participating teams. We evaluated these assemblies using a combination of optical map data, Fosmid sequences, and several statistical methods. From over 100 different metrics, we chose ten key measures by which to assess the overall quality of the assemblies.Many current genome assemblers produced useful assemblies, containing a significant representation of their genes and overall genome structure. However, the high degree of variability between the entries suggests that there is still much room for improvement in the field of genome assembly and that approaches which work well in assembling the genome of one species may not necessarily work well for another.


July 7, 2019  |  

Combination of short-read, long-read and optical mapping assemblies reveals large-scale tandem repeat arrays with population genetic implications.

Accurate and contiguous genome assembly is key to a comprehensive understanding of the processes shaping genomic diversity and evolution. Yet, it is frequently constrained by constitutive heterochromatin, usually characterized by highly repetitive DNA. As a key feature of genome architecture associated with centromeric and telomeric regions it influences meiotic recombination. In this study, we assess the impact of large tandem repeat arrays on the recombination rate landscape in an avian speciation model, the Eurasian crow. We assembled two high-quality genome references using single-molecule real-time sequencing (long-read assembly, LR) and single-molecule restriction maps (optical map assembly, OM). A three-way comparison including the published short-read assembly (SR) constructed for the same individual allowed assessing assembly properties and pinpointing mis-assemblies. Combining information from all three assemblies, we characterized 36 previously unidentified large repetitive regions in the proximity of sequence assembly breakpoints, the majority of which contained complex arrays of a 14-kb satellite repeat or its 1.2-kb subunit. Using genome-wide population re-sequencing data, we estimated the population-scaled recombination rate (?) and found it to be significantly reduced in these regions. These findings are consistent with an effect of low recombination in regions adjacent to centromeric or subtelomeric heterochromatin, and add to our understanding of the processes generating widespread heterogeneity in genetic diversity and differentiation along the genome. By combining three independent technologies, our results highlight the importance of adding a layer of information on genome structure inaccessible to each approach independently. Published by Cold Spring Harbor Laboratory Press.


July 7, 2019  |  

Repeated divergent selection on pigmentation genes in a rapid finch radiation.

Instances of recent and rapid speciation are suitable for associating phenotypes with their causal genotypes, especially if gene flow homogenizes areas of the genome that are not under divergent selection. We study a rapid radiation of nine sympatric bird species known as capuchino seedeaters, which are differentiated in sexually selected characters of male plumage and song. We sequenced the genomes of a phenotypically diverse set of species to search for differentiated genomic regions. Capuchinos show differences in a small proportion of their genomes, yet selection has acted independently on the same targets in different members of this radiation. Many divergent regions contain genes involved in the melanogenesis pathway, with the strongest signal originating from putative regulatory regions. Selection has acted on these same genomic regions in different lineages, likely shaping the evolution of cis-regulatory elements, which control how more conserved genes are expressed and thereby generate diversity in classically sexually selected traits.


July 7, 2019  |  

Correspondence on Lovell et al.: response to Bornelöv et al.

While the analysis of Bornelöv et al. is informative, they provide evidence for the existence of only 3% of the reported avian missing genes set, and thus do not significantly challenge our main findings that specific groups of syntenic protein-coding genes are missing in birds.This is a response to the Correspondence article: https://www.dx.doi.org/10.1186/s13059-017-1231-1.


July 7, 2019  |  

Genome-wide epigenetic studies in chicken: A review

Over the years, farmed birds have been selected on various performance traits mainly through genetic selection. However, many studies have shown that genetics may not be the sole contributor to phenotypic plasticity. Gene expression programs can be influenced by environmentally induced epigenetic changes that may alter the phenotypes of the developing animals. Recently, high-throughput sequencing techniques became sufficiently affordable thanks to technological advances to study whole epigenetic landscapes in model plants and animals. In birds, a growing number of studies recently took advantage of these techniques to gain insights into the epigenetic mechanisms of gene regulation in processes such as immunity or environmental adaptation. Here, we review the current gain of knowledge on the chicken epigenome made possible by recent advances in high-throughput sequencing techniques by focusing on the two most studied epigenetic modifications, DNA methylation and histone post-translational modifications. We discuss and provide insights about designing and performing analyses to further explore avian epigenomes. A better understanding of the molecular mechanisms underlying the epigenetic regulation of gene expression in relation to bird phenotypes may provide new knowledge and markers that should undoubtedly contribute to a sustainable poultry production.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.