April 21, 2020  |  

Genome Sequence and Methylation Patterns of Halorubrum sp. Strain BOL3-1, the First Haloarchaeon Isolated and Cultured from Salar de Uyuni, Bolivia.

Halorubrum sp. strain BOL3-1 was isolated from Salar de Uyuni, Bolivia, and sequenced using single-molecule real-time sequencing. Its 3.7-Mbp genome was analyzed for gene content and methylation patterns and incorporated into the Haloarchaeal Genomes Database (http://halo.umbc.edu). The polyextremophilic character and high-elevation environment make the microbe of interest for astrobiology. Copyright © 2019 DasSarma et al.

September 22, 2019  |  

Microbial phylogenetic profiling with the Pacific Biosciences sequencing platform.

High-throughput sequencing of 16S rRNA gene amplicons has revolutionized the capacity and depth of microbial community profiling. Several sequencing platforms are available, but most phylogenetic studies are performed on the 454-pyrosequencing platform because its longer reads can give finer phylogenetic resolution. The Pacific Biosciences (PacBio) sequencing platform is significantly less expensive per run, does not rely on amplification for library generation, and generates reads that are, on average, four times longer than those from 454 (C2 chemistry), but the resulting high error rates appear to preclude its use in phylogenetic profiling. Recently, however, the PacBio platform was used to characterize four electrosynthetic microbiomes to the genus-level for less than USD 1,000 through the use of PacBio’s circular consensus sequence technology. Here, we describe in greater detail: 1) the output from successful 16S rRNA gene amplicon profiling with PacBio, 2) how the analysis was contingent upon several alterations to standard bioinformatic quality control workflows, and 3) the advantages and disadvantages of using the PacBio platform for community profiling.

September 22, 2019  |  

A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling.

In the last 5 years, the rapid pace of innovations and improvements in sequencing technologies has completely changed the landscape of metagenomic and metagenetic experiments. Therefore, it is critical to benchmark the various methodologies for interrogating the composition of microbial communities, so that we can assess their strengths and limitations. The most common phylogenetic marker for microbial community diversity studies is the 16S ribosomal RNA gene and in the last 10 years the field has moved from sequencing a small number of amplicons and samples to more complex studies where thousands of samples and multiple different gene regions are interrogated.We assembled 2 synthetic communities with an even (EM) and uneven (UM) distribution of archaeal and bacterial strains and species, as metagenomic control material, to assess performance of different experimental strategies. The 2 synthetic communities were used in this study, to highlight the limitations and the advantages of the leading sequencing platforms: MiSeq (Illumina), The Pacific Biosciences RSII, 454 GS-FLX/+ (Roche), and IonTorrent (Life Technologies). We describe an extensive survey based on synthetic communities using 3 experimental designs (fusion primers, universal tailed tag, ligated adaptors) across the 9 hypervariable 16S rDNA regions. We demonstrate that library preparation methodology can affect data interpretation due to different error and chimera rates generated during the procedure. The observed community composition was always biased, to a degree that depended on the platform, sequenced region and primer choice. However, crucially, our analysis suggests that 16S rRNA sequencing is still quantitative, in that relative changes in abundance of taxa between samples can be recovered, despite these biases.We have assessed a range of experimental conditions across several next generation sequencing platforms using the most up-to-date configurations. We propose that the choice of sequencing platform and experimental design needs to be taken into consideration in the early stage of a project by running a small trial consisting of several hypervariable regions to quantify the discriminatory power of each region. We also suggest that the use of a synthetic community as a positive control would be beneficial to identify the potential biases and procedural drawbacks that may lead to data misinterpretation. The results of this study will serve as a guideline for making decisions on which experimental condition and sequencing platform to consider to achieve the best microbial profiling.

September 22, 2019  |  

Genomic and metabolic diversity of Marine Group I Thaumarchaeota in the mesopelagic of two subtropical gyres.

Marine Group I (MGI) Thaumarchaeota are one of the most abundant and cosmopolitan chemoautotrophs within the global dark ocean. To date, no representatives of this archaeal group retrieved from the dark ocean have been successfully cultured. We used single cell genomics to investigate the genomic and metabolic diversity of thaumarchaea within the mesopelagic of the subtropical North Pacific and South Atlantic Ocean. Phylogenetic and metagenomic recruitment analysis revealed that MGI single amplified genomes (SAGs) are genetically and biogeographically distinct from existing thaumarchaea cultures obtained from surface waters. Confirming prior studies, we found genes encoding proteins for aerobic ammonia oxidation and the hydrolysis of urea, which may be used for energy production, as well as genes involved in 3-hydroxypropionate/4-hydroxybutyrate and oxidative tricarboxylic acid pathways. A large proportion of protein sequences identified in MGI SAGs were absent in the marine cultures Cenarchaeum symbiosum and Nitrosopumilus maritimus, thus expanding the predicted protein space for this archaeal group. Identifiable genes located on genomic islands with low metagenome recruitment capacity were enriched in cellular defense functions, likely in response to viral infections or grazing. We show that MGI Thaumarchaeota in the dark ocean may have more flexibility in potential energy sources and adaptations to biotic interactions than the existing, surface-ocean cultures.

September 22, 2019  |  

Electrosynthesis of commodity chemicals by an autotrophic microbial community.

A microbial community originating from brewery waste produced methane, acetate, and hydrogen when selected on a granular graphite cathode poised at -590 mV versus the standard hydrogen electrode (SHE) with CO(2) as the only carbon source. This is the first report on the simultaneous electrosynthesis of these commodity chemicals and the first description of electroacetogenesis by a microbial community. Deep sequencing of the active community 16S rRNA revealed a dynamic microbial community composed of an invariant Archaea population of Methanobacterium spp. and a shifting Bacteria population. Acetobacterium spp. were the most abundant Bacteria on the cathode when acetogenesis dominated. Methane was generally the dominant product with rates increasing from <1 to 7 mM day(-1) (per cathode liquid volume) and was concomitantly produced with acetate and hydrogen. Acetogenesis increased to >4 mM day(-1) (accumulated to 28.5 mM over 12 days), and methanogenesis ceased following the addition of 2-bromoethanesulfonic acid. Traces of hydrogen accumulated during initial selection and subsequently accelerated to >11 mM day(-1) (versus 0.045 mM day(-1) abiotic production). The hypothesis of electrosynthetic biocatalysis occurring at the microbe-electrode interface was supported by a catalytic wave (midpoint potential of -460 mV versus SHE) in cyclic voltammetry scans of the biocathode, the lack of redox active components in the medium, and the generation of comparatively high amounts of products (even after medium exchange). In addition, the volumetric production rates of these three commodity chemicals are marked improvements for electrosynthesis, advancing the process toward economic feasibility.

September 22, 2019  |  

The Santa Pola saltern as a model for studying the microbiota of hypersaline environments.

Multi-pond salterns constitute an excellent model for the study of the microbial diversity and ecology of hypersaline environments, showing a wide range of salt concentrations, from seawater to salt saturation. Accumulated studies on the Santa Pola (Alicante, Spain) multi-pond solar saltern during the last 35 years include culture-dependent and culture-independent molecular methods and metagenomics more recently. These approaches have permitted to determine in depth the microbial diversity of the ponds with intermediate salinities (from 10 % salts) up to salt saturation, with haloarchaea and bacteria as the two main dominant groups. In this review, we describe the main results obtained using the different methodologies, the most relevant contributions for understanding the ecology of these extreme environments and the future perspectives for such studies.

September 22, 2019  |  

Candidatus Nitrosocaldus cavascurensis, an ammonia oxidizing, extremely thermophilic archaeon with a highly mobile genome.

Ammonia oxidizing archaea (AOA) of the phylum Thaumarchaeota are widespread in moderate environments but their occurrence and activity has also been demonstrated in hot springs. Here we present the first enrichment of a thermophilic representative with a sequenced genome, which facilitates the search for adaptive strategies and for traits that shape the evolution of Thaumarchaeota.CandidatusNitrosocaldus cavascurensis has been enriched from a hot spring in Ischia, Italy. It grows optimally at 68°C under chemolithoautotrophic conditions on ammonia or urea converting ammonia stoichiometrically into nitrite with a generation time of approximately 23 h. Phylogenetic analyses based on ribosomal proteins place the organism as a sister group to all known mesophilic AOA. The 1.58 Mb genome ofCa.N. cavascurensis harbors anamoAXCB gene cluster encoding ammonia monooxygenase and genes for a 3-hydroxypropionate/4-hydroxybutyrate pathway for autotrophic carbon fixation, but also genes that indicate potential alternative energy metabolisms. Although abona fidegene for nitrite reductase is missing, the organism is sensitive to NO-scavenging, underlining the potential importance of this compound for AOA metabolism.Ca.N. cavascurensis is distinct from all other AOA in its gene repertoire for replication, cell division and repair. Its genome has an impressive array of mobile genetic elements and other recently acquired gene sets, including conjugative systems, a provirus, transposons and cell appendages. Some of these elements indicate recent exchange with the environment, whereas others seem to have been domesticated and might convey crucial metabolic traits.

September 22, 2019  |  

The DNA methylome of the hyperthermoacidophilic crenarchaeon Sulfolobus acidocaldarius.

DNA methylation is the most common epigenetic modification observed in the genomic DNA (gDNA) of prokaryotes and eukaryotes. Methylated nucleobases, N6-methyl-adenine (m6A), N4-methyl-cytosine (m4C), and 5-methyl-cytosine (m5C), detected on gDNA represent the discrimination mark between self and non-self DNA when they are part of restriction-modification systems in prokaryotes (Bacteria and Archaea). In addition, m5C in Eukaryotes and m6A in Bacteria play an important role in the regulation of key cellular processes. Although archaeal genomes present modified bases as in the two other domains of life, the significance of DNA methylations as regulatory mechanisms remains largely uncharacterized in Archaea. Here, we began by investigating the DNA methylome of Sulfolobus acidocaldarius. The strategy behind this initial study entailed the use of combined digestion assays, dot blots, and genome resequencing, which utilizes specific restriction enzymes, antibodies specifically raised against m6A and m5C and single-molecule real-time (SMRT) sequencing, respectively, to identify DNA methylations occurring in exponentially growing cells. The previously identified restriction-modification system, specific of S. acidocaldarius, was confirmed by digestion assay and SMRT sequencing while, the presence of m6A was revealed by dot blot and identified on the characteristic Dam motif by SMRT sequencing. No m5C was detected by dot blot under the conditions tested. Furthermore, by comparing the distribution of both detected methylations along the genome and, by analyzing DNA methylation profiles in synchronized cells, we investigated in which cellular pathways, in particular the cell cycle, this m6A methylation could be a key player. The analysis of sequencing data rejected a role for m6A methylation in another defense system and also raised new questions about a potential involvement of this modification in the regulation of other biological functions in S. acidocaldarius.

July 19, 2019  |  

Characterization of DNA methyltransferase specificities using single-molecule, real-time DNA sequencing.

DNA methylation is the most common form of DNA modification in prokaryotic and eukaryotic genomes. We have applied the method of single-molecule, real-time (SMRT) DNA sequencing that is capable of direct detection of modified bases at single-nucleotide resolution to characterize the specificity of several bacterial DNA methyltransferases (MTases). In addition to previously described SMRT sequencing of N6-methyladenine and 5-methylcytosine, we show that N4-methylcytosine also has a specific kinetic signature and is therefore identifiable using this approach. We demonstrate for all three prokaryotic methylation types that SMRT sequencing confirms the identity and position of the methylated base in cases where the MTase specificity was previously established by other methods. We then applied the method to determine the sequence context and methylated base identity for three MTases with unknown specificities. In addition, we also find evidence of unanticipated MTase promiscuity with some enzymes apparently also modifying sequences that are related, but not identical, to the cognate site.

July 19, 2019  |  

Genome-wide DNA methylation analysis of Haloferax volcanii H26 and identification of DNA methyltransferase related PD-(D/E)XK nuclease family protein HVO_A0006.

Restriction-modification (RM) systems have evolved to protect the cell from invading DNAs and are composed of two enzymes: a DNA methyltransferase and a restriction endonuclease. Although RM systems are present in both archaeal and bacterial genomes, DNA methylation in archaea has not been well defined. In order to characterize the function of RM systems in archaeal species, we have made use of the model haloarchaeon Haloferax volcanii. A genomic DNA methylation analysis of H. volcanii strain H26 was performed using PacBio single molecule real-time (SMRT) sequencing. This analysis was also performed on a strain of H. volcanii in which an annotated DNA methyltransferase gene HVO_A0006 was deleted from the genome. Sequence analysis of H26 revealed two motifs which are modified in the genome: C(m4)TAG and GCA(m6)BN6VTGC. Analysis of the ?HVO_A0006 strain indicated that it exhibited reduced adenine methylation compared to the parental strain and altered the detected adenine motif. However, protein domain architecture analysis and amino acid alignments revealed that HVO_A0006 is homologous only to the N-terminal endonuclease region of Type IIG RM proteins and contains a PD-(D/E)XK nuclease motif, suggesting that HVO_A0006 is a PD-(D/E)XK nuclease family protein. Further bioinformatic analysis of the HVO_A0006 gene demonstrated that the gene is rare among the Halobacteria. It is surrounded by two transposition genes suggesting that HVO_A0006 is a fragment of a Type IIG RM gene, which has likely been acquired through gene transfer, and affects restriction-modification activity by interacting with another RM system component(s). Here, we present the first genome-wide characterization of DNA methylation in an archaeal species and examine the function of a DNA methyltransferase related gene HVO_A0006.

July 19, 2019  |  

The epigenomic landscape of prokaryotes.

DNA methylation acts in concert with restriction enzymes to protect the integrity of prokaryotic genomes. Studies in a limited number of organisms suggest that methylation also contributes to prokaryotic genome regulation, but the prevalence and properties of such non-restriction-associated methylation systems remain poorly understood. Here, we used single molecule, real-time sequencing to map DNA modifications including m6A, m4C, and m5C across the genomes of 230 diverse bacterial and archaeal species. We observed DNA methylation in nearly all (93%) organisms examined, and identified a total of 834 distinct reproducibly methylated motifs. This data enabled annotation of the DNA binding specificities of 620 DNA Methyltransferases (MTases), doubling known specificities for previously hard to study Type I, IIG and III MTases, and revealing their extraordinary diversity. Strikingly, 48% of organisms harbor active Type II MTases with no apparent cognate restriction enzyme. These active ‘orphan’ MTases are present in diverse bacterial and archaeal phyla and show motif specificities and methylation patterns consistent with functions in gene regulation and DNA replication. Our results reveal the pervasive presence of DNA methylation throughout the prokaryotic kingdoms, as well as the diversity of sequence specificities and potential functions of DNA methylation systems.

July 7, 2019  |  

Complete genome sequence of Haloarcula sp. CBA1115 isolated from non-purified solar salts.

Haloarcula sp. CBA1115, isolated from non-purified solar salts from South Korea, is a halophilic archaeon belonging to the family Halobacteriaceae. Here, we present the complete genome sequence of the strain Haloarcula sp. CBA1115 (4,225,046bp, with a G+C content of 61.98%), which is distributed over one chromosome and five plasmids. A comparison of the genome sequence of Haloarcula sp. CBA1115 with those of members of its closely related taxa showed that the closest neighbor is Haloarcula hispanica Y27, a popular model organism for archaeal studies. The strain was found to possess a number of genes predicted to be involved in osmo-regulatory strategies and metal regulation, suggesting that it might be useful for bioremediation in extreme environments. Copyright © 2015 Elsevier B.V. All rights reserved.

July 7, 2019  |  

Genome sequence of the haloarchaeon Haloterrigena jeotgali type strain A29(T) isolated from salt-fermented food.

Haloterrigena jeotgali is a halophilic archaeon within the family Natrialbaceae that was isolated from shrimp jeotgal, a traditional Korean salt-fermented food. A29(T) is the type strain of H. jeotgali, and is a Gram-negative staining, non-motile, rod-shaped archaeon that grows in 10 %-30 % (w/v) NaCl. We present the annotated H. jeotgali A29(T) genome sequence along with a summary of its features. The 4,131,621 bp genome with a GC content of 64.9 % comprises 4,215 protein-coding genes and 127 RNA genes. The sequence can provide useful information on genetic mechanisms that enable haloarchaea to endure a hypersaline environment.

July 7, 2019  |  

Draft genome sequence of the extremely halophilic archaeon Haladaptatus cibarius type strain D43T isolated from fermented seafood

An extremely halophilic archaeon, Haladaptatus cibarius D43 T , was isolated from traditional Korean salt-rich fermented seafood. Strain D43 T shows the highest 16S rRNA gene sequence similarity (98.7 %) with Haladaptatus litoreus RO1-28 T , is Gram-negative staining, motile, and extremely halophilic. Despite potential industrial applications of extremely halophilic archaea, their genome characteristics remain obscure. Here, we describe the whole genome sequence and annotated features of strain D43 T . The 3,926,724 bp genome includes 4,092 protein-coding and 57 RNA genes (including 6 rRNA and 49 tRNA genes) with an average G?+?C content of 57.76 %.

July 7, 2019  |  

Genome sequence of Candidatus Nitrososphaera evergladensis from group I.1b enriched from Everglades soil reveals novel genomic features of the ammonia-oxidizing archaea.

The activity of ammonia-oxidizing archaea (AOA) leads to the loss of nitrogen from soil, pollution of water sources and elevated emissions of greenhouse gas. To date, eight AOA genomes are available in the public databases, seven are from the group I.1a of the Thaumarchaeota and only one is from the group I.1b, isolated from hot springs. Many soils are dominated by AOA from the group I.1b, but the genomes of soil representatives of this group have not been sequenced and functionally characterized. The lack of knowledge of metabolic pathways of soil AOA presents a critical gap in understanding their role in biogeochemical cycles. Here, we describe the first complete genome of soil archaeon Candidatus Nitrososphaera evergladensis, which has been reconstructed from metagenomic sequencing of a highly enriched culture obtained from an agricultural soil. The AOA enrichment was sequenced with the high throughput next generation sequencing platforms from Pacific Biosciences and Ion Torrent. The de novo assembly of sequences resulted in one 2.95 Mb contig. Annotation of the reconstructed genome revealed many similarities of the basic metabolism with the rest of sequenced AOA. Ca. N. evergladensis belongs to the group I.1b and shares only 40% of whole-genome homology with the closest sequenced relative Ca. N. gargensis. Detailed analysis of the genome revealed coding sequences that were completely absent from the group I.1a. These unique sequences code for proteins involved in control of DNA integrity, transporters, two-component systems and versatile CRISPR defense system. Notably, genomes from the group I.1b have more gene duplications compared to the genomes from the group I.1a. We suggest that the presence of these unique genes and gene duplications may be associated with the environmental versatility of this group.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.