fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Analysis of complete genome sequence and major surface antigens of Neorickettsia helminthoeca, causative agent of salmon poisoning disease.

Neorickettsia helminthoeca, a type species of the genus Neorickettsia, is an endosymbiont of digenetic trematodes of veterinary importance. Upon ingestion of salmonid fish parasitized with infected trematodes, canids develop salmon poisoning disease (SPD), an acute febrile illness that is particularly severe and often fatal in dogs without adequate treatment. We determined and analysed the complete genome sequence of N. helminthoeca: a single small circular chromosome of 884 232 bp encoding 774 potential proteins. N. helminthoeca is unable to synthesize lipopolysaccharides and most amino acids, but is capable of synthesizing vitamins, cofactors, nucleotides and bacterioferritin. N. helminthoeca is, however, distinct from majority of the family Anaplasmataceae…

Read More »

Sunday, July 7, 2019

The complete genome sequence of Exiguobacterium arabatum W-01 reveals potential probiotic functions.

Shrimp is extensively cultured worldwide. Shrimp farming is suffering from a variety of diseases. Probiotics are considered to be one of the effective methods to prevent and cure shrimp diseases. Exiguobacterium arabatum W-01, a gram-positive and orange-pigmented bacterium, was isolated from the intestine of a healthy Penaeus vannamei specimen. Whole-genome sequencing revealed a genome of 2,914,854 bp, with 48.02% GC content. In total, 3,083 open reading frames (ORFs) were identified, with an average length of 843.98 bp and a mean GC content of 48.11%, accounting for 89.27% of the genome. Among these ORFs, 2,884 (93.5%) genes were classified into Clusters of Orthologous…

Read More »

Sunday, July 7, 2019

Complete genome sequence of Vibrio coralliilyticus 58, isolated from Pacific oyster (Crassostrea gigas) larvae.

We report here the complete genome of Vibrio coralliilyticus strain 58, which was originally isolated from inactive Pacific oyster (Crassostrea gigas) larvae in Japan. The assembled genome consisted of two chromosomes and one plasmid. These data will provide valuable information and important insights into the biodiversity of this organism. Copyright © 2017 Kim et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Photobacterium damselae subsp. piscicida strain OT-51443 isolated from yellowtail (Seriola quinqueradiata) in Japan.

Pseudotuberculosis caused by infection of Photobacterium damselae subsp. piscicida has caused serious economic damages to aquaculture farms worldwide. Here, the whole-genome sequence of P. damselae subsp. piscicida strain OT-51443, isolated in Japan, was determined and suggests that this genome consists of two chromosomes and five plasmids. Copyright © 2017 Aoki et al.

Read More »

Sunday, July 7, 2019

Biosynthesis of 1a-hydroxycorticosterone in the winter skate Leucoraja ocellata: evidence to suggest a novel steroidogenic route.

The present study explores the ability of intracellular bacteria within the renal-inter-renal tissue of the winter skate Leucoraja ocellata to metabolize steroids and contribute to the synthesis of the novel elasmobranch corticosteroid, 1a-hydroxycorticosterone (1a-OH-B). Despite the rarity of C1 hydroxylation noted in the original identification of 1a-OH-B, literature provides evidence for steroid C1 hydroxylation by micro-organisms. Eight ureolytic bacterial isolates were identified in the renal-inter-renal tissue of L. ocellata, the latter being the site of 1a-OH-B synthesis. From incubations of bacterial isolates with known amounts of potential 1a-OH-B precursors, one isolate UM008 of the genus Rhodococcus was seen to metabolize…

Read More »

Sunday, July 7, 2019

Plasmid composition in Aeromonas salmonicida subsp. salmonicida 01-B526 unravels unsuspected type three secretion system loss patterns.

Aeromonas salmonicida subsp. salmonicida is a ubiquitous psychrophilic waterborne bacterium and a fish pathogen. The numerous mobile elements, especially insertion sequences (IS), in its genome promote rearrangements that impact its phenotype. One of the main virulence factors of this bacterium, its type three secretion system (TTSS), is affected by these rearrangements. In Aeromonas salmonicida subsp. salmonicida most of the TTSS genes are encoded in a single locus on a large plasmid called pAsa5, and may be lost when the bacterium is cultivated at a higher temperature (25 °C), producing non-virulent mutants. In a previous study, pAsa5-rearranged strains that lacked the TTSS…

Read More »

Sunday, July 7, 2019

Whole-genome sequence of Photobacterium damselae subsp. piscicida strain 91-197, isolated from hybrid striped bass (Morone sp.) in the United States.

Photobacterium damselae subsp. piscicida is a causative bacterium of fish pasteurellosis, which has caused serious economic damage to aquaculture farms worldwide. Here, the whole-genome sequence of P. damselae subsp. piscicida 91-197, isolated in the United States, suggests that this genome consists of two chromosomes and two plasmids. Copyright © 2017 Teru et al.

Read More »

Sunday, July 7, 2019

Plasmid dynamics in Vibrio parahaemolyticus strains related to shrimp Acute Hepatopancreatic Necrosis Syndrome (AHPNS).

Vibrio parahaemolyticus is a causative agent of acute hapatopancreatic necrosis syndrome (AHPNS) which causes early mortality in white shrimp. Emergence of AHPNS has caused tremendous economic loss for aquaculture industry particularly in Asia since 2010. Previous studies reported that strains causing AHPNS harbor a 69-kb plasmid with possession of virulence genes, pirA and pirB. However, genetic variation of the 69-kb plasmid among AHPNS related strains has not been investigated. This study aimed to analyze genetic composition and diversity of the 69-kb plasmid in strains isolated from shrimps affected by AHPNS. Plasmids recovered from V. parahaemolyticus strain VPE61 which represented typical…

Read More »

Sunday, July 7, 2019

The genetic basis of resistance and matching-allele interactions of a host-parasite system: The Daphnia magna-Pasteuria ramosa model.

Negative frequency-dependent selection (NFDS) is an evolutionary mechanism suggested to govern host-parasite coevolution and the maintenance of genetic diversity at host resistance loci, such as the vertebrate MHC and R-genes in plants. Matching-allele interactions of hosts and parasites that prevent the emergence of host and parasite genotypes that are universally resistant and infective are a genetic mechanism predicted to underpin NFDS. The underlying genetics of matching-allele interactions are unknown even in host-parasite systems with empirical support for coevolution by NFDS, as is the case for the planktonic crustacean Daphnia magna and the bacterial pathogen Pasteuria ramosa. We fine-map one locus…

Read More »

Sunday, July 7, 2019

Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta).

Porphyra umbilicalis (laver) belongs to an ancient group of red algae (Bangiophyceae), is harvested for human food, and thrives in the harsh conditions of the upper intertidal zone. Here we present the 87.7-Mbp haploid Porphyra genome (65.8% G + C content, 13,125 gene loci) and elucidate traits that inform our understanding of the biology of red algae as one of the few multicellular eukaryotic lineages. Novel features of the Porphyra genome shared by other red algae relate to the cytoskeleton, calcium signaling, the cell cycle, and stress-tolerance mechanisms including photoprotection. Cytoskeletal motor proteins in Porphyra are restricted to a small…

Read More »

Sunday, July 7, 2019

The complete genome sequence of the fish pathogen Tenacibaculum maritimum provides insights into virulence mechanisms.

Tenacibaculum maritimum is a devastating bacterial pathogen of wild and farmed marine fish with a broad host range and a worldwide distribution. We report here the complete genome sequence of the T. maritimum type strain NCIMB 2154(T). The genome consists of a 3,435,971-base pair circular chromosome with 2,866 predicted protein-coding genes. Genes encoding the biosynthesis of exopolysaccharides, the type IX secretion system, iron uptake systems, adhesins, hemolysins, proteases, and glycoside hydrolases were identified. They are likely involved in the virulence process including immune escape, invasion, colonization, destruction of host tissues, and nutrient scavenging. Among the predicted virulence factors, type IX…

Read More »

Sunday, July 7, 2019

Variations in 5S rDNAs in diploid and tetraploid offspring of red crucian carp × common carp.

The allotetraploid hybrid fish (4nAT) that was created in a previous study through an intergeneric cross between red crucian carp (Carassius auratus red var., ?) and common carp (Cyprinus carpio L., ?) provided an excellent platform to investigate the effect of hybridization and polyploidization on the evolution of 5S rDNA. The 5S rDNAs of paternal common carp were made up of a coding sequence (CDS) and a non-transcribed spacer (NTS) unit, and while the 5S rDNAs of maternal red crucian carp contained a CDS and a NTS unit, they also contained a variable number of interposed regions (IPRs). The CDSs…

Read More »

Sunday, July 7, 2019

Complete genome sequence of acute hepatopancreatic necrosis disease-causing Vibrio campbellii LA16-V1, isolated from Penaeus vannamei cultured in a Latin American country.

We report here the complete genome sequence of Vibrio campbellii, isolated from Penaeus vannamei cultured in a Latin American country. The Tn3-like transposon and pirAB genes were encoded on the plasmid pLA16-2. These data support the geographical variations in the virulence plasmid found among acute hepatopancreatic necrosis disease (AHPND)-causing Vibrio isolates from Latin America and Asia. Copyright © 2017 Ahn et al.

Read More »

Sunday, July 7, 2019

pirAB(vp) -bearing Vibrio parahaemolyticus and Vibrio campbellii pathogens isolated from the same AHPND-affected pond possess highly similar pathogenic plasmids.

Acute hepatopancreatic necrosis disease (AHPND) is a severe shrimp disease originally shown to be caused by virulent strains of Vibrio parahaemolyticus (VPAHPND). Rare cases of AHPND caused by Vibrio species other than V. parahaemolyticus were reported. We compared an AHPND-causing V. campbellii (VCAHPND) and a VPAHPND isolate from the same AHPND-affected pond. Both strains are positive for the virulence genes pirAB(vp) . Immersion challenge test with Litopenaeus vannamei indicated the two strains possessed similar pathogenicity. Complete genome comparison showed that the pirAB(vp) -bearing plasmids in the two strains were highly homologous, and they both shared high homologies with plasmid pVA1,…

Read More »

1 6 7 8 9

Subscribe for blog updates:

Archives

Search

Categories

Press Release

PacBio Grants Equity Incentive Award to New Employee

Friday, November 19, 2021

Stay
Current

Visit our blog »