Menu
September 22, 2019  |  

The genome of the marine medaka Oryzias melastigma.

Marine medaka (Oryzias melastigma) is considered to be a useful fish model for marine and estuarine ecotoxicology studies and has good potential for field-based population genomics because of its geographical distribution in Asian estuarine and coastal areas. In this study, we present the first whole-genome draft of O. melastigma. The genome assembly consists of 8,602 scaffolds (N50 = 23.737 Mb) and a total genome length of 779.4 Mb. A total of 23,528 genes were predicted, and 12,670 gene families shared with three teleost species (Japanese medaka, mangrove killifish and zebrafish) were identified. Genome analyses revealed that the O. melastigma genome is highly heterozygous and contains a large number of repeat sequences. This assembly represents a useful genomic resource for fish scientists.© 2018 John Wiley & Sons Ltd.


September 22, 2019  |  

Early life stages of Northern shrimp (Pandalus borealis) are sensitive to fish feed containing the anti-parasitic drug diflubenzuron.

Increasing use of fish feed containing the chitin synthesis inhibiting anti-parasitic drug diflubenzuron (DFB) in salmon aquaculture has raised concerns over its impact on coastal ecosystems. Larvae of Northern shrimp (Pandalus borealis) were exposed to DFB medicated feed under Control conditions (7.0?°C, pH 8.0) and under Ocean Acidification and Warming conditions (OAW, 9.5?°C and pH 7.6). Two weeks’ exposure to DFB medicated feed caused significantly increased mortality. The effect of OAW and DFB on mortality of shrimp larvae was additive; 10% mortality in Control, 35% in OAW, 66% in DFB and 92% in OAW?+?DFB. In OAW?+?DFB feeding and swimming activity were reduced for stage II larvae and none of the surviving larvae developed to stage IV. Two genes involved in feeding (GAPDH and PRLP) and one gene involved in moulting (DD9B) were significantly downregulated in larvae exposed to OAW?+?DFB relative to the Control. Due to a shorter intermoult period under OAW conditions, the OAW?+?DFB larvae were exposed throughout two instead of one critical pre-moult period. This may explain the more serious sub-lethal effects for OAW?+?DFB than DFB larvae. A single day exposure at 4?days after hatching did not affect DFB larvae, but high mortality was observed for OAW?+?DFB larvae, possibly because they were exposed closer to moulting. High mortality of shrimp larvae exposed to DFB medicated feed, indicates that the use of DFB in salmon aquaculture is a threat to crustacean zooplankton. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.


September 22, 2019  |  

Isolation, functional characterization and transmissibility of p3PS10, a multidrug resistance plasmid of the fish pathogen Piscirickettsia salmonis.

Antibiotic resistance is a major public health concern due to its association with the loss of efficacy of antimicrobial therapies. Horizontal transfer events may play a significant role in the dissemination of resistant bacterial phenotypes, being mobilizable plasmids a well-known mechanism. In this study, we aimed to gain insights into the genetics underlying the development of antibiotic resistance by Piscirickettsia salmonis isolates, a bacterial fish pathogen and causative agent of salmonid piscirickettsiosis, and the main target of antibiotics used in Chilean salmon farming. We provide experimental evidence that the plasmid p3PS10, which harbors multidrug resistance genes for chloramphenicol (cat2), tetracyclines [tet(31)], aminoglycosides (sat1 and aadA1), and sulfonamides (sul2), is carried by a group of P. salmonis isolates exhibiting a markedly reduced susceptibility to oxytetracycline in vitro (128-256 µg/mL of minimal inhibitory concentration, MIC). Antibiotic susceptibility analysis extended to those antibiotics showed that MIC of chloramphenicol, streptomycin, and sulfamethoxazole/trimethoprim were high, but the MIC of florfenicol remained at the wild-type level. By means of molecular cloning, we demonstrate that those genes encoding putative resistance markers are indeed functional. Interestingly, mating assays clearly show that p3PS10 is able to be transferred into and replicate in different hosts, thereby conferring phenotypes similar to those found in the original host. According to epidemiological data, this strain is distributed across aquaculture settings in southern Chile and is likely to be responsible for oxytetracycline treatment failures. This work demonstrates that P. salmonis is more versatile than it was thought, capable of horizontally transferring DNA, and probably playing a role as a vector of resistance traits among the seawater bacterial population. However, the low transmission frequency of p3PS10 suggests a negligible chance of resistance markers being spread to human pathogens.


September 22, 2019  |  

The complete genome sequence of Vibrio aestuarianus W-40 reveals virulence factor genes.

Vibrio aestuarianus is an opportunistic environmental pathogen that has been associated with epidemics in cultured shrimp Penaeus vannamei. Hepatopancreas microsporidian (HPM) and monodon slow growth syndrome (MSGS) have been reported in cultured P. vannamei. In this study, we sequenced and assembled the whole genome of V. aestuarianus strain W-40, a strain that was originally isolated from the intestines of an infected P. vannamei. The genome of V. aestuarianus strain W-40 contains two circular chromosomes of 483,7307 bp with a 46.23% GC content. We identified 4,457 open reading frames (ORFs) that occupy 86.35% of the genome. Vibrio aestuarianus strain W-40 consists primarily of the ATP-binding cassette (ABC) transporter system and the phosphotransferase system (PTS). CagA is a metabolism system that includes bacterial extracellular solute-binding protein. Glutathione reductase can purge superoxide radicals (O22-) and hydrogen peroxide (H2 O2 ) damage in V. aestuarianus strain W-40. The presence of two compete type I restriction-modification systems was confirmed. A total of 42 insertion sequences (IS) elements and 16 IS elements were identified. Our results revealed a host of virulence factors that likely contribute to the pathogenicity of V. aestuarianus strain W-40, including the virulence factor genes vacA, clpC, and bvgA, which are important for biofilm dispersion. Several bacitracin and tetracycline antibiotic resistance-encoding genes and type VI secretion systems were also identified in the genome. The complete genome sequence will aid future studies of the pathogenesis of V. aestuarianus strain W-40 and allow for new strategies to control disease to be developed.© 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.


September 22, 2019  |  

Completion of genome of Aeromonas salmonicida subsp. salmonicida 01-B526 reveals how sequencing technologies can influence sequence quality and result interpretations.

Aeromonas salmonicida subsp. salmonicida is a pathogen that primarily infects salmonids. A strain of this bacterium, 01-B526, has been used in several studies as a reference. The genomic sequence of this strain is available, but comes from pyrosequencing and is the second most fragmented assembly for this bacterium. We generated its closed genome sequence and found a pitfall in result interpretations associated with low-quality genomic sequences.


September 22, 2019  |  

Draft genome of Glyptosternon maculatum, an endemic fish from Tibet Plateau.

Mechanisms for high-altitude adaption have attracted widespread interest among evolutionary biologists. Several genome-wide studies have been carried out for endemic vertebrates in Tibet, including mammals, birds, and amphibians. However, little information is available about the adaptive evolution of highland fishes. Glyptosternon maculatum (Regan 1905), also known as Regan or barkley and endemic to the Tibetan Plateau, belongs to the Sisoridae family, order Siluriformes (catfishes). This species lives at an elevation ranging from roughly 2,800 m to 4,200 m. Hence, a high-quality reference genome of G. maculatum provides an opportunity to investigate high-altitude adaption mechanisms of fishes.To obtain a high-quality reference genome sequence of G. maculatum, we combined Pacific Bioscience single-molecule real-time sequencing, Illumina paired-end sequencing, 10X Genomics linked-reads, and BioNano optical map techniques. In total, 603.99 Gb sequencing data were generated. The assembled genome was about 662.34 Mb with scaffold and contig N50 sizes of 20.90 Mb and 993.67 kb, respectively, which captured 83% complete and 3.9% partial vertebrate Benchmarking Universal Single-Copy Orthologs. Repetitive elements account for 35.88% of the genome, and ?22,066 protein-coding genes were predicted from the genome, of which 91.7% have been functionally annotated.We present the first comprehensive de novo genome of G. maculatum. This genetic resource is fundamental for investigating the origin of G. maculatum and will improve our understanding of high-altitude adaption of fishes. The assembled genome can also be used as reference for future population genetic studies of G. maculatum.


September 22, 2019  |  

A draft genome assembly of the Chinese sillago (Sillago sinica), the first reference genome for Sillaginidae fishes.

Sillaginidae, also known as smelt-whitings, is a family of benthic coastal marine fishes in the Indo-West Pacific that have high ecological and economic importance. Many Sillaginidae species, including the Chinese sillago (Sillago sinica), have been recently described in China, providing valuable material to analyze genetic diversification of the family Sillaginidae. Here, we constructed a reference genome for the Chinese sillago, with the aim to set up a platform for comparative analysis of all species in this family.Using the single-molecule real-time DNA sequencing platform Pacific Biosciences (PacBio) Sequel, we generated ~27.3 Gb genomic DNA sequences for the Chinese sillago. We reconstructed a genome assembly of 534 Mb using a strategy that takes advantage of complementary strengths of two genome assembly programs, Canu and FALCON. The genome size was consistent with the estimated genome size based on k-mer analysis. The assembled genome consisted of 802 contigs with a contig N50 length of 2.6 Mb. We annotated 22,122 protein-coding genes in the Chinese sillago genomes using a de novo method as well as RNA sequencing data and homologies to other teleosts. According to the phylogenetic analysis using protein-coding genes, the Chinese sillago is closely related to Larimichthys crocea and Dicentrarchus labrax and diverged from their ancestor around 69.5-82.6 million years ago.Using long reads generated with PacBio sequencing technology, we have built a draft genome assembly for the Chinese sillago, which is the first reference genome for Sillaginidae species. This genome assembly sets a stage for comparative analysis of the diversification and adaptation of fishes in Sillaginidae.


September 22, 2019  |  

B chromosomes of the Asian seabass (Lates calcarifer) contribute to genome variations at the level of individuals and populations.

The Asian seabass (Lates calcarifer) is a bony fish from the Latidae family, which is widely distributed in the tropical Indo-West Pacific region. The karyotype of the Asian seabass contains 24 pairs of A chromosomes and a variable number of AT- and GC-rich B chromosomes (Bchrs or Bs). Dot-like shaped and nucleolus-associated AT-rich Bs were microdissected and sequenced earlier. Here we analyzed DNA fragments from Bs to determine their repeat and gene contents using the Asian seabass genome as a reference. Fragments of 75 genes, including an 18S rRNA gene, were found in the Bs; repeats represented 2% of the Bchr assembly. The 18S rDNA of the standard genome and Bs were similar and enriched with fragments of transposable elements. A higher nuclei DNA content in the male gonad and somatic tissue, compared to the female gonad, was demonstrated by flow cytometry. This variation in DNA content could be associated with the intra-individual variation in the number of Bs. A comparison between the copy number variation among the B-related fragments from whole genome resequencing data of Asian seabass individuals identified similar profiles between those from the South-East Asian/Philippines and Indian region but not the Australian ones. Our results suggest that Bs might cause variations in the genome among the individuals and populations of Asian seabass. A personalized copy number approach for segmental duplication detection offers a suitable tool for population-level analysis across specimens with low coverage genome sequencing.


September 22, 2019  |  

Development and validation of 58K SNP-array and high-density linkage map in Nile tilapia (O. niloticus).

Despite being the second most important aquaculture species in the world accounting for 7.4% of global production in 2015, tilapia aquaculture has lacked genomic tools like SNP-arrays and high-density linkage maps to improve selection accuracy and accelerate genetic progress. In this paper, we describe the development of a genotyping array containing more than 58,000 SNPs for Nile tilapia (Oreochromis niloticus). SNPs were identified from whole genome resequencing of 32 individuals from the commercial population of the Genomar strain, and were selected for the SNP-array based on polymorphic information content and physical distribution across the genome using the Orenil1.1 genome assembly as reference sequence. SNP-performance was evaluated by genotyping 4991 individuals, including 689 offspring belonging to 41 full-sib families, which revealed high-quality genotype data for 43,588 SNPs. A preliminary genetic linkage map was constructed using Lepmap2 which in turn was integrated with information from the O_niloticus_UMD1 genome assembly to produce an integrated physical and genetic linkage map comprising 40,186 SNPs distributed across 22 linkage groups (LGs). Around one-third of the LGs showed a different recombination rate between sexes, with the female being greater than the male map by a factor of 1.2 (1632.9 to 1359.6 cM, respectively), with most LGs displaying a sigmoid recombination profile. Finally, the sex-determining locus was mapped to position 40.53 cM on LG23, in the vicinity of the anti-Müllerian hormone (amh) gene. These new resources has the potential to greatly influence and improve the genetic gain when applying genomic selection and surpass the difficulties of efficient selection for invasively measured traits in Nile tilapia.


September 22, 2019  |  

First draft genome sequence of the rock bream in the family Oplegnathidae.

The rock bream (Oplegnathus fasciatus) is one of the most economically valuable marine fish in East Asia, and due to various environmental factors, there is substantial revenue loss in the production sector. Therefore, knowledge of its genome is required to uncover the genetic factors and the solutions to these problems. In this study, we constructed the first draft genome of O. fasciatus as a reference for the family Oplegnathidae. The genome size is estimated to be 749?Mb, and it was assembled into 766?Mb by combining Illumina and PacBio sequences. A total of 24,053 transcripts (23,338 genes) are predicted, and among those transcripts, 23,362 (97%), are annotated with functional terms. Finally, the completeness of the genome assembly was assessed by CEGMA, which resulted in the complete mapping of 220 (88.7%) core genes in the genome. To the best of our knowledge, this is the first draft genome for the family Oplegnathidae.


September 22, 2019  |  

pYR4 from a Norwegian isolate of Yersinia ruckeri is a putative virulence plasmid encoding both a type IV pilus and a type IV secretion system

Enteric redmouth disease caused by the pathogen Yersinia ruckeri is a significant problem for fish farming around the world. Despite its importance, only a few virulence factors of Y. ruckeri have been identified and studied in detail. Here, we report and analyze the complete DNA sequence of pYR4, a plasmid from a highly pathogenic Norwegian Y. ruckeri isolate, sequenced using PacBio SMRT technology. Like the well-known pYV plasmid of human pathogenic Yersiniae, pYR4 is a member of the IncFII family. Thirty-one percent of the pYR4 sequence is unique compared to other Y. ruckeri plasmids. The unique regions contain, among others genes, a large number of mobile genetic elements and two partitioning systems. The G+C content of pYR4 is higher than that of the Y. ruckeri NVH_3758 genome, indicating its relatively recent horizontal acquisition. pYR4, as well as the related plasmid pYR3, comprises operons that encode for type IV pili and for a conjugation system (tra). In contrast to other Yersinia plasmids, pYR4 cannot be cured at elevated temperatures. Our study highlights the power of PacBio sequencing technology for identifying mis-assembled segments of genomic sequences. Comparative analysis of pYR4 and other Y. ruckeri plasmids and genomes, which were sequenced by second and the third generation sequencing technologies, showed errors in second generation sequencing assemblies. Specifically, in the Y. ruckeri 150 and Y. ruckeri ATCC29473 genome assemblies, we mapped the entire pYR3 plasmid sequence. Placing plasmid sequences on the chromosome can result in erroneous biological conclusions. Thus, PacBio sequencing or similar long-read methods should always be preferred for de novo genome sequencing. As the tra operons of pYR3, although misplaced on the chromosome during the genome assembly process, were demonstrated to have an effect on virulence, and type IV pili are virulence factors in many bacteria, we suggest that pYR4 directly contributes to Y. ruckeri virulence.


September 22, 2019  |  

A continuous genome assembly of the corkwing wrasse (Symphodus melops).

The wrasses (Labridae) are one of the most successful and species-rich families of the Perciformes order of teleost fish. Its members display great morphological diversity, and occupy distinct trophic levels in coastal waters and coral reefs. The cleaning behaviour displayed by some wrasses, such as corkwing wrasse (Symphodus melops), is of particular interest for the salmon aquaculture industry to combat and control sea lice infestation as an alternative to chemicals and pharmaceuticals. There are still few genome assemblies available within this fish family for comparative and functional studies, despite the rapid increase in genome resources generated during the past years. Here, we present a highly continuous genome assembly of the corkwing wrasse using PacBio SMRT sequencing (x28.8) followed by error correction with paired-end Illumina data (x132.9). The present genome assembly consists of 5040 contigs (N50?=?461,652?bp) and a total size of 614 Mbp, of which 8.5% of the genome sequence encode known repeated elements. The genome assembly covers 94.21% of highly conserved genes across ray-finned fish species. We find evidence for increased copy numbers specific for corkwing wrasse possibly highlighting diversification and adaptive processes in gene families including N-linked glycosylation (ST8SIA6) and stress response kinases (HIPK1). By comparative analyses, we discover that de novo repeats, often not properly investigated during genome annotation, encode hundreds of immune-related genes. This new genomic resource, together with the ballan wrasse (Labrus bergylta), will allow for in-depth comparative genomics as well as population genetic analyses for the understudied wrasses. Copyright © 2018 Elsevier Inc. All rights reserved.


September 22, 2019  |  

Whole-genome sequencing of Chinese yellow catfish provides a valuable genetic resource for high-throughput identification of toxin genes.

Naturally derived toxins from animals are good raw materials for drug development. As a representative venomous teleost, Chinese yellow catfish (Pelteobagrus fulvidraco) can provide valuable resources for studies on toxin genes. Its venom glands are located in the pectoral and dorsal fins. Although with such interesting biologic traits and great value in economy, Chinese yellow catfish is still lacking a sequenced genome. Here, we report a high-quality genome assembly of Chinese yellow catfish using a combination of next-generation Illumina and third-generation PacBio sequencing platforms. The final assembly reached 714 Mb, with a contig N50 of 970 kb and a scaffold N50 of 3.65 Mb, respectively. We also annotated 21,562 protein-coding genes, in which 97.59% were assigned at least one functional annotation. Based on the genome sequence, we analyzed toxin genes in Chinese yellow catfish. Finally, we identified 207 toxin genes and classified them into three major groups. Interestingly, we also expanded a previously reported sex-related region (to ˜6 Mb) in the achieved genome assembly, and localized two important toxin genes within this region. In summary, we assembled a high-quality genome of Chinese yellow catfish and performed high-throughput identification of toxin genes from a genomic view. Therefore, the limited number of toxin sequences in public databases will be remarkably improved once we integrate multi-omics data from more and more sequenced species.


September 22, 2019  |  

An improved genome assembly for Larimichthys crocea reveals hepcidin gene expansion with diversified regulation and function.

Larimichthys crocea (large yellow croaker) is a type of perciform fish well known for its peculiar physiological properties and economic value. Here, we constructed an improved version of the L. crocea genome assembly, which contained 26,100 protein-coding genes. Twenty-four pseudo-chromosomes of L. crocea were also reconstructed, comprising 90% of the genome assembly. This improved assembly revealed several expansions in gene families associated with olfactory detection, detoxification, and innate immunity. Specifically, six hepcidin genes (LcHamps) were identified in L. crocea, possibly resulting from lineage-specific gene duplication. All LcHamps possessed similar genomic structures and functional domains, but varied substantially with respect to expression pattern, transcriptional regulation, and biological function. LcHamp1 was associated specifically with iron metabolism, while LcHamp2s were functionally diverse, involving in antibacterial activity, antiviral activity, and regulation of intracellular iron metabolism. This functional diversity among gene copies may have allowed L. crocea to adapt to diverse environmental conditions.


September 22, 2019  |  

Insights into the microbiota of Asian seabass (Lates calcarifer) with tenacibaculosis symptoms and description of sp. nov. Tenacibaculum singaporense

Outbreaks of diseases in farmed fish remain a recurring problem despite the development of vaccines and improved hygiene standards on aquaculture farms. One commonly observed bacterial disease in tropical aquaculture of the South-East Asian region is tenacibaculosis, which is attributed to members of the Bacteroidetes genus Tenacibaculum, most notably T. maritimum. The impact of tenacibaculosis on fish microbiota remains poorly understood. In this study, we analysed the microbiota of different tissue types of commercially reared Asian seabass (Lates calcarifer) that showed symptoms of tenacibaculosis and compared the microbial communities to those of healthy and experimentally infected fish that were exposed to diseased farm fish. The microbiota of diseased farm fish was dominated by Proteobacteria (relative abundancetextpmstandard deviation, 74.5%textpm22.8%) and Bacteroidetes (18.07%textpm21.7%), the latter mainly comprised by a high abundance of Tenacibaculum species (17.6%textpm20.7%). In healthy seabass Proteobacteria had also highest relative abundance (48.04%textpm0.02%), but Firmicutes (34.2%textpm0.02%) and Fusobacteria (12.0%textpm0.03%) were the next two major constituents. Experimentally infected fish developed lesions characteristic for tenacibaculosis, but the microbiota was primarily dominated by Proteobacteria (90.4%textpm0.2%) and Firmicutes (6.2%textpm0.1%). The relative abundance of Tenacibaculum species in experimentally infected fish was significantly lower than in the commercially reared diseased fish and revealed a higher prevalence of different Tenacibaculum species. One strain was isolated and is described here as sp. nov. Tenacibaculum singaporense TLL-A1T (=DSM 106434T, KCTC 62393T). The genome of T. singaporense was sequenced and compared to those of T. maritimum DSM 17995T and the newly sequenced T. mesophilum DSM 13764T.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.