July 19, 2019  |  

Inhibitors of the tick-borne, hemorrhagic fever-associated flaviviruses.

No antiviral therapies are available for the tick-borne flaviviruses associated with hemorrhagic fevers: Kyasanur Forest disease virus (KFDV), both classical and the Alkhurma hemorrhagic fever virus (AHFV) subtype, and Omsk hemorrhagic fever virus (OHFV). We tested compounds reported to have antiviral activity against members of the Flaviviridae family for their ability to inhibit AHFV replication. 6-Azauridine (6-azaU), 2′-C-methylcytidine (2′-CMC), and interferon alpha 2a (IFN-a2a) inhibited the replication of AHFV and also KFDV, OHFV, and Powassan virus. The combination of IFN-a2a and 2′-CMC exerted an additive antiviral effect on AHFV, and the combination of IFN-a2a and 6-azaU was moderately synergistic. The combination of 2′-CMC and 6-azaU was complex, being strongly synergistic but with a moderate level of antagonism. The antiviral activity of 6-azaU was reduced by the addition of cytidine but not guanosine, suggesting that it acted by inhibiting pyrimidine biosynthesis. To investigate the mechanism of action of 2′-CMC, AHFV variants with reduced susceptibility to 2′-CMC were selected. We used a replicon system to assess the substitutions present in the selected AHFV population. A double NS5 mutant, S603T/C666S, and a triple mutant, S603T/C666S/M644V, were more resistant to 2′-CMC than the wild-type replicon. The S603T/C666S mutant had a reduced level of replication which was increased when M644V was also present, although the replication of this triple mutant was still below that of the wild type. The S603 and C666 residues were predicted to lie in the active site of the AHFV NS5 polymerase, implicating the catalytic center of the enzyme as the binding site for 2′-CMC. Copyright © 2014, American Society for Microbiology. All Rights Reserved.


July 19, 2019  |  

Intrahost dynamics of antiviral resistance in influenza a virus reflect complex patterns of segment linkage, reassortment, and natural selection.

Resistance following antiviral therapy is commonly observed in human influenza viruses. Although this evolutionary process is initiated within individual hosts, little is known about the pattern, dynamics, and drivers of antiviral resistance at this scale, including the role played by reassortment. In addition, the short duration of human influenza virus infections limits the available time window in which to examine intrahost evolution. Using single-molecule sequencing, we mapped, in detail, the mutational spectrum of an H3N2 influenza A virus population sampled from an immunocompromised patient who shed virus over a 21-month period. In this unique natural experiment, we were able to document the complex dynamics underlying the evolution of antiviral resistance. Individual resistance mutations appeared weeks before they became dominant, evolved independently on cocirculating lineages, led to a genome-wide reduction in genetic diversity through a selective sweep, and were placed into new combinations by reassortment. Notably, despite frequent reassortment, phylogenetic analysis also provided evidence for specific patterns of segment linkage, with a strong association between the hemagglutinin (HA)- and matrix (M)-encoding segments that matches that previously observed at the epidemiological scale. In sum, we were able to reveal, for the first time, the complex interaction between multiple evolutionary processes as they occur within an individual host.Understanding the evolutionary forces that shape the genetic diversity of influenza virus is crucial for predicting the emergence of drug-resistant strains but remains challenging because multiple processes occur concurrently. We characterized the evolution of antiviral resistance in a single persistent influenza virus infection, representing the first case in which reassortment and the complex patterns of drug resistance emergence and evolution have been determined within an individual host. Deep-sequence data from multiple time points revealed that the evolution of antiviral resistance reflects a combination of frequent mutation, natural selection, and a complex pattern of segment linkage and reassortment. In sum, these data show how immunocompromised hosts may help reveal the drivers of strain emergence. Copyright © 2015 Rogers et al.


July 19, 2019  |  

Single-molecule sequencing reveals complex genomic variation of hepatitis B virus during 15 years of chronic infection following liver transplantation.

Chronic hepatitis B (CHB) is prevalent worldwide. The infectious agent, hepatitis B virus (HBV) replicates via an RNA intermediate and is error-prone, leading to rapid generation of closely related but not identical viral variants, including those that can escape host immune responses and antiviral treatments. The complexity of CHB can be further enhanced by the presence of HBV variants with large deletions in the genome, generated via splicing (spHBV). Although spHBV variants are incapable of autonomous replication, their replication is rescued by wild-type HBV. SpHBV variants have been shown to enhance wild-type virus replication, and their prevalence increases with liver disease progression. Single-molecule deep sequencing was performed on whole HBV genomes extracted from longitudinal samples of a post-liver transplant CHB subject, collected over a 15-year period that included the liver explant. By employing novel bioinformatics methods, this analysis showed a complex dynamics of the viral population across a period of changing treatment regimens. The spHBV detected in the liver explant remained present post-transplantation, along with emergence of a highly diverse novel spHBV population as well as variants with multiple deletions in the preS genes. The identification of novel mutations outside the HBV reverse transcriptase gene that co-occur with known drug resistant mutations, highlight the relevance of using full genome deep sequencing and support the hypothesis that drug resistance involves interactions across the full-length HBV genome.Single-molecule sequencing allowed characterising, in unprecedented detail, the evolution of HBV populations and offered unique insights into the dynamics of defective and spHBV variants following liver transplantation and complex treatment regimes. This analysis also showed rapid adaptation of HBV populations to treatment regimens with evolving drug resistance phenotypes and evidence of purifying selection across the whole genome. Finally, the new open source bioinformatics tools are freely available, with the capacity to easily identify potential spliced variants from deep sequencing data. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 19, 2019  |  

Defective HIV-1 proviruses produce novel protein-coding RNA species in HIV-infected patients on combination antiretroviral therapy.

Despite years of plasma HIV-RNA levels <40 copies per milliliter during combination antiretroviral therapy (cART), the majority of HIV-infected patients exhibit persistent seropositivity to HIV-1 and evidence of immune activation. These patients also show persistence of proviruses of HIV-1 in circulating peripheral blood mononuclear cells. Many of these proviruses have been characterized as defective and thus thought to contribute little to HIV-1 pathogenesis. By combining 5'LTR-to-3'LTR single-genome amplification and direct amplicon sequencing, we have identified the presence of "defective" proviruses capable of transcribing novel unspliced HIV-RNA (usHIV-RNA) species in patients at all stages of HIV-1 infection. Although these novel usHIV-RNA transcripts had exon structures that were different from those of the known spliced HIV-RNA variants, they maintained translationally competent ORFs, involving elements of gag, pol, env, rev, and nef to encode a series of novel HIV-1 chimeric proteins. These novel usHIV-RNAs were detected in five of five patients, including four of four patients with prolonged viral suppression of HIV-RNA levels <40 copies per milliliter for more than 6 y. Our findings suggest that the persistent defective proviruses of HIV-1 are not "silent," but rather may contribute to HIV-1 pathogenesis by stimulating host-defense pathways that target foreign nucleic acids and proteins.


July 19, 2019  |  

Variation and evolution in the glutamine-rich repeat region of Drosophila argonaute-2.

RNA interference pathways mediate biological processes through Argonaute-family proteins, which bind small RNAs as guides to silence complementary target nucleic acids . In insects and crustaceans Argonaute-2 silences viral nucleic acids, and therefore acts as a primary effector of innate antiviral immunity. Although the function of the major Argonaute-2 domains, which are conserved across most Argonaute-family proteins, are known, many invertebrate Argonaute-2 homologs contain a glutamine-rich repeat (GRR) region of unknown function at the N-terminus . Here we combine long-read amplicon sequencing of Drosophila Genetic Reference Panel (DGRP) lines with publicly available sequence data from many insect species to show that this region evolves extremely rapidly and is hyper-variable within species. We identify distinct GRR haplotype groups in Drosophila melanogaster, and suggest that one of these haplotype groups has recently risen to high frequency in a North American population. Finally, we use published data from genome-wide association studies of viral resistance in D. melanogaster to test whether GRR haplotypes are associated with survival after virus challenge. We find a marginally significant association with survival after challenge with Drosophila C Virus in the DGRP, but we were unable to replicate this finding using lines from the Drosophila Synthetic Population Resource panel. Copyright © 2016 Palmer and Obbard.


July 19, 2019  |  

High frequency of mitochondrial DNA mutations in HIV-infected treatment-experienced individuals.

We recently observed a decrease in deoxyribonucleotide (dNTP) pools in HIV-infected individuals on antiretroviral therapy (ART). Alterations in dNTPs result in mutations in mitochondrial DNA (mtDNA) in cell culture and animal models. Therefore, we investigated whether ART is associated with mitochondrial genome sequence variation in peripheral blood mononuclear cells (PBMCs) of HIV-infected treatment-experienced individuals.In this substudy of a case-control study, 71 participants were included: 22 ‘cases’, who were HIV-infected treatment-experienced patients with mitochondrial toxicity, 25 HIV-infected treatment-experienced patients without mitochondrial toxicity, and 24 HIV-uninfected controls. Total DNA was extracted from PBMCs and purified polymerase chain reaction (PCR) products were subjected to third-generation sequencing using the PacBio Single Molecule Real-Time (SMRT) sequencing technology. The sequences were aligned against the revised Cambridge reference sequence for human mitochondrial DNA (NC_012920.1) for detection of variants.We identified a total of 123 novel variants, 39 of them in the coding region. HIV-infected treatment-experienced patients with and without toxicity had significantly higher average numbers of mitochondrial variants per participant than HIV-uninfected controls. We observed a higher burden of mtDNA large-scale deletions in HIV-infected treatment-experienced patients with toxicity compared with HIV-uninfected controls (P = 0.02). The frequency of mtDNA molecules containing a common deletion (mt.d4977) was higher in HIV-infected treatment-experienced patients with toxicity compared with HIV-uninfected controls (P = 0.06). There was no statistically significant difference in mtDNA variants between HIV-infected treatment-experienced patients with and without toxicity.The frequency of mtDNA variants (mutations and large-scale deletions) was higher in HIV-infected treatment-experienced patients with or without ART-induced toxicity than in uninfected controls.© 2016 The Authors. HIV Medicine published by John Wiley & Sons Ltd on behalf of British HIV Association.


July 19, 2019  |  

Evolution of multi-drug resistant HCV clones from pre-existing resistant-associated variants during direct-acting antiviral therapy determined by third-generation sequencing.

Resistance-associated variant (RAV) is one of the most significant clinical challenges in treating HCV-infected patients with direct-acting antivirals (DAAs). We investigated the viral dynamics in patients receiving DAAs using third-generation sequencing technology. Among 283 patients with genotype-1b HCV receiving daclatasvir?+?asunaprevir (DCV/ASV), 32 (11.3%) failed to achieve sustained virological response (SVR). Conventional ultra-deep sequencing of HCV genome was performed in 104 patients (32 non-SVR, 72 SVR), and detected representative RAVs in all non-SVR patients at baseline, including Y93H in 28 (87.5%). Long contiguous sequences spanning NS3 to NS5A regions of each viral clone in 12 sera from 6 representative non-SVR patients were determined by third-generation sequencing, and showed the concurrent presence of several synonymous mutations linked to resistance-associated substitutions in a subpopulation of pre-existing RAVs and dominant isolates at treatment failure. Phylogenetic analyses revealed close genetic distances between pre-existing RAVs and dominant RAVs at treatment failure. In addition, multiple drug-resistant mutations developed on pre-existing RAVs after DCV/ASV in all non-SVR cases. In conclusion, multi-drug resistant viral clones at treatment failure certainly originated from a subpopulation of pre-existing RAVs in HCV-infected patients. Those RAVs were selected for and became dominant with the acquisition of multiple resistance-associated substitutions under DAA treatment pressure.


July 7, 2019  |  

Complete genome sequence of Bifidobacterium longum subsp. infantis strain CECT 7210, a probiotic strain active against rotavirus infections.

Bifidobacterium longum subsp. infantis CECT 7210 is a probiotic strain able to inhibit rotavirus in vitro and protect against viral infection in both cell cultures and mice. Here, we report its complete genome sequence, as deciphered by PacBio single-molecule real-time (SMRT) technology. An analysis of the sequence may provide insights into its functional activity. Copyright © 2015 Chenoll et al.


July 7, 2019  |  

Deep sequencing in the management of hepatitis virus infections.

The hepatitis viruses represent a major public health problem worldwide. Procedures for characterization of the genomic composition of their populations, accurate diagnosis, identification of multiple infections, and information on inhibitor-escape mutants for treatment decisions are needed. Deep sequencing methodologies are extremely useful for these viruses since they replicate as complex and dynamic quasispecies swarms whose complexity and mutant composition are biologically relevant traits. Population complexity is a major challenge for disease prevention and control, but also an opportunity to distinguish among related but phenotypically distinct variants that might anticipate disease progression and treatment outcome. Detailed characterization of mutant spectra should permit choosing better treatment options, given the increasing number of new antiviral inhibitors available. In the present review we briefly summarize our experience on the use of deep sequencing for the management of hepatitis virus infections, particularly for hepatitis B and C viruses, and outline some possible new applications of deep sequencing for these important human pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Analysis of hepatitis C NS5A resistance associated polymorphisms using ultra deep single molecule real time (SMRT) sequencing.

Development of Hepatitis C virus (HCV) resistance against direct-acting antivirals (DAAs), including NS5A inhibitors, is an obstacle to successful treatment of HCV when DAAs are used in sub-optimal combinations. Furthermore, it has been shown that baseline (pre-existing) resistance against DAAs is present in treatment naïve-patients and this will potentially complicate future treatment strategies in different HCV genotypes (GTs). Thus the aim was to detect low levels of NS5A resistant associated variants (RAVs) in a limited sample set of treatment-naïve patients of HCV GT1a and 3a, since such polymorphisms can display in vitro resistance as high as 60000 fold. Ultra-deep single molecule real time (SMRT) sequencing with the Pacific Biosciences (PacBio) RSII instrument was used to detect these RAVs. The SMRT sequencing was conducted on ten samples; three of them positive with Sanger sequencing (GT1a Q30H and Y93N, and GT3a Y93H), five GT1a samples, and two GT3a non-positive samples. The same methods were applied to the HCV GT1a H77-plasmid in a dilution series, in order to determine the error rates of replication, which in turn was used to determine the limit of detection (LOD), as defined by mean + 3SD, of minority variants down to 0.24%. We found important baseline NS5A RAVs at levels between 0.24 and 0.5%, which could potentially have clinical relevance. This new method with low level detection of baseline RAVs could be useful in predicting the most cost-efficient combination of DAA treatment, and reduce the treatment duration for an HCV infected individual. Copyright © 2015 Elsevier B.V. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.