Menu
April 21, 2020  |  

Next-generation HLA typing of 382 International Histocompatibility Working Group reference B-lymphoblastoid cell lines: Report from the 17th International HLA and Immunogenetics Workshop.

Extended molecular characterization of HLA genes in the IHWG reference B-lymphoblastoid cell lines (B-LCLs) was one of the major goals for the 17th International HLA and Immunogenetics Workshop (IHIW). Although reference B-LCLs have been examined extensively in previous workshops complete high-resolution typing was not completed for all the classical class I and class II HLA genes. To address this, we conducted a single-blind study where select panels of B-LCL genomic DNA samples were distributed to multiple laboratories for HLA genotyping by next-generation sequencing methods. Identical cell panels comprised of 24 and 346 samples were distributed and typed by at least four laboratories in order to derive accurate consensus HLA genotypes. Overall concordance rates calculated at both 2- and 4-field allele-level resolutions ranged from 90.4% to 100%. Concordance for the class I genes ranged from 91.7 to 100%, whereas concordance for class II genes was variable; the lowest observed at HLA-DRB3 (84.2%). At the maximum allele-resolution 78 B-LCLs were defined as homozygous for all 11 loci. We identified 11 novel exon polymorphisms in the entire cell panel. A comparison of the B-LCLs NGS HLA genotypes with the HLA genotypes catalogued in the IPD-IMGT/HLA Database Cell Repository, revealed an overall allele match at 68.4%. Typing discrepancies between the two datasets were mostly due to the lower-resolution historical typing methods resulting in incomplete HLA genotypes for some samples listed in the IPD-IMGT/HLA Database Cell Repository. Our approach of multiple-laboratory NGS HLA typing of the B-LCLs has provided accurate genotyping data. The data generated by the tremendous collaborative efforts of the 17th IHIW participants is useful for updating the current cell and sequence databases and will be a valuable resource for future studies.Copyright © 2019. Published by Elsevier Inc.


April 21, 2020  |  

Recipients receiving better HLA-matched hematopoietic cell transplantation grafts, uncovered by a novel HLA typing method, have superior survival: A retrospective study

HLA matching at an allelic-level resolution for volunteer unrelated donor (VUD) hematopoietic cell transplanta- tion (HCT) results in improved survival and fewer post-transplant complications. Limitations in typing technolo- gies used for the hyperpolymorphic HLA genes have meant that variations outside of the antigen recognition domain (ARD) have not been previously characterized in HCT. Our aim was to explore the extent of diversity out- side of the ARD and determine the impact of this diversity on transplant outcome. Eight hundred ninety-one VUD-HCT donors and their recipients transplanted for a hematologic malignancy in the United Kingdom were ret- rospectively HLA typed at an ultra-high resolution (UHR) for HLA-A, -B, -C, -DRB1, -DQB1, and -DPB1 using next- generation sequencing technology. Matching was determined at full gene level for HLA class I and at a coding DNA sequence level for HLA class II genes. The HLA matching status changed in 29.1% of pairs after UHR HLA typ- ing. The 12/12 UHR HLA matched patients had significantly improved 5-year overall survival when compared with those believed to be 12/12 HLA matches based on their original HLA typing but were found to be mismatched after UHR HLA typing (54.8% versus 30.1%, P= .022). Survival was also significantly better in 12/12 UHR HLA- matched patients when compared with those with any degree of mismatch at this level of resolution (55.1% ver- sus 40.1%, P= .005). This study shows that better HLA matching, found when typing is done at UHR that includes exons outside of the ARD, introns, and untranslated regions, can significantly improve outcomes for recipients of a VUD-HCT for a hematologic malignancy and should be prospectively performed at donor selection.


September 22, 2019  |  

Report from the Killer-cell Immunoglobulin-like Receptors (KIR) component of the 17th International HLA and Immunogenetics Workshop.

The goals of the KIR component of the 17th International HLA and Immunogenetics Workshop (IHIW) were to encourage and educate researchers to begin analyzing KIR at allelic resolution, and to survey the nature and extent of KIR allelic diversity across human populations. To represent worldwide diversity, we analyzed 1269 individuals from ten populations, focusing on the most polymorphic KIR genes, which express receptors having three immunoglobulin (Ig)-like domains (KIR3DL1/S1, KIR3DL2 and KIR3DL3). We identified 13 novel alleles of KIR3DL1/S1, 13 of KIR3DL2 and 18 of KIR3DL3. Previously identified alleles, corresponding to 33 alleles of KIR3DL1/S1, 38 of KIR3DL2, and 43 of KIR3DL3, represented over 90% of the observed allele frequencies for these genes. In total we observed 37 KIR3DL1/S1 allotypes, 40 for KIR3DL2 and 44 for KIR3DL3. As KIR allotype diversity can affect NK cell function, this demonstrates potential for high functional diversity worldwide. Allelic variation further diversifies KIR haplotypes. We determined KIR3DL3?~?KIR3DL1/S1?~?KIR3DL2 haplotypes from five of the studied populations, and observed multiple population-specific haplotypes in each. This included 234 distinct haplotypes in European Americans, 191 in Ugandans, 35 in Papuans, 95 in Egyptians and 86 in Spanish populations. For another 35 populations, encompassing 642,105 individuals we focused on KIR3DL2 and identified another 375 novel alleles, with approximately half of them observed in more than one individual. The KIR allelic level data gathered from this project represents the most comprehensive summary of global KIR allelic diversity to date, and continued analysis will improve understanding of KIR allelic polymorphism in global populations. Further, the wealth of new data gathered in the course of this workshop component highlights the value of collaborative, community-based efforts in immunogenetics research, exemplified by the IHIW.Copyright © 2018. Published by Elsevier Inc.


September 22, 2019  |  

Trophoblast organoids as a model for maternal-fetal interactions during human placentation.

The placenta is the extraembryonic organ that supports the fetus during intrauterine life. Although placental dysfunction results in major disorders of pregnancy with immediate and lifelong consequences for the mother and child, our knowledge of the human placenta is limited owing to a lack of functional experimental models1. After implantation, the trophectoderm of the blastocyst rapidly proliferates and generates the trophoblast, the unique cell type of the placenta. In vivo, proliferative villous cytotrophoblast cells differentiate into two main sub-populations: syncytiotrophoblast, the multinucleated epithelium of the villi responsible for nutrient exchange and hormone production, and extravillous trophoblast cells, which anchor the placenta to the maternal decidua and transform the maternal spiral arteries2. Here we describe the generation of long-term, genetically stable organoid cultures of trophoblast that can differentiate into both syncytiotrophoblast and extravillous trophoblast. We used human leukocyte antigen (HLA) typing to confirm that the organoids were derived from the fetus, and verified their identities against four trophoblast-specific criteria3. The cultures organize into villous-like structures, and we detected the secretion of placental-specific peptides and hormones, including human chorionic gonadotropin (hCG), growth differentiation factor 15 (GDF15) and pregnancy-specific glycoprotein (PSG) by mass spectrometry. The organoids also differentiate into HLA-G+ extravillous trophoblast cells, which vigorously invade in three-dimensional cultures. Analysis of the methylome reveals that the organoids closely resemble normal first trimester placentas. This organoid model will be transformative for studying human placental development and for investigating trophoblast interactions with the local and systemic maternal environment.


July 19, 2019  |  

HLA typing for the next generation.

Allele-level resolution data at primary HLA typing is the ideal for most histocompatibility testing laboratories. Many high-throughput molecular HLA typing approaches are unable to determine the phase of observed DNA sequence polymorphisms, leading to ambiguous results. The use of higher resolution methods is often restricted due to cost and time limitations. Here we report on the feasibility of using Pacific Biosciences’ Single Molecule Real-Time (SMRT) DNA sequencing technology for high-resolution and high-throughput HLA typing. Seven DNA samples were typed for HLA-A, -B and -C. The results showed that SMRT DNA sequencing technology was able to generate sequences that spanned entire HLA Class I genes that allowed for accurate allele calling. Eight novel genomic HLA class I sequences were identified, four were novel alleles, three were confirmed as genomic sequence extensions and one corrected an existing genomic reference sequence. This method has the potential to revolutionize the field of HLA typing. The clinical impact of achieving this level of resolution HLA typing data is likely to considerable, particularly in applications such as organ and blood stem cell transplantation where matching donors and recipients for their HLA is of utmost importance.


July 19, 2019  |  

Single molecule real-time (SMRT®) DNA sequencing of HLA genes at ultra-high resolution from 126 International HLA and Immunogenetics Workshop cell lines.

The hyperpolymorphic HLA genes play important roles in disease and transplantation and act as genetic markers of migration and evolution. A panel of 107 B-lymphoblastoid cell lines (B-LCLs) was established in 1987 at the 10th International Histocompatibility Workshop as a resource for the immunogenetics community. These B-LCLs are well characterised and represent diverse ethnicities and HLA haplotypes. Here we have applied Pacific Biosciences’ Single Molecule Real-Time (SMRT) DNA sequencing to HLA type 126 B-LCL, including the 107 IHIW cells, to ultra-high resolution. Amplicon sequencing of full-length HLA class I genes (HLA-A, -B and -C) and partial length HLA class II genes (HLA-DRB1, -DQB1 and -DPB1) was performed. We typed a total of 931 HLA alleles, 895 (96%) of which were consistent with the typing in the IPD-IMGT/HLA Database (Release 3.27.0, 2017-01-20), with 595 (64%) typed at a higher resolution. Discrepant types, including novel alleles (n=10) and changes in zygosity (n=13), as well as previously unreported types (n=34) were observed. In addition, patterns of linkage disequilibrium were distinguished by four-field resolution typing of HLA-B and HLA-C. By improving and standardising the HLA typing of these B-LCLs, we have ensured their continued usefulness as a resource for the immunogenetics community in the age of next generation DNA sequencing.This article is protected by copyright. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.