X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 21, 2020

Whole-genome sequence of the bovine blood fluke Schistosoma bovis supports interspecific hybridization with S. haematobium.

Mesenteric infection by the parasitic blood fluke Schistosoma bovis is a common veterinary problem in Africa and the Middle East and occasionally in the Mediterranean Region. The species also has the ability to form interspecific hybrids with the human parasite S. haematobium with natural hybridisation observed in West Africa, presenting possible zoonotic transmission. Additionally, this exchange of alleles between species may dramatically influence disease dynamics and parasite evolution. We have generated a 374 Mb assembly of the S. bovis genome using Illumina and PacBio-based technologies. Despite infecting different hosts and organs, the genome sequences of S. bovis and S. haematobium…

Read More »

Tuesday, April 21, 2020

The bacteriocin from the prophylactic candidate Streptococcus suis 90-1330 is widely distributed across S. suis isolates and appears encoded in an integrative and conjugative element.

The Gram-positive a-hemolytic Streptococcus suis is a major pathogen in the swine industry and an emerging zoonotic agent that can cause several systemic issues in both pigs and humans. A total of 35 S. suis serotypes (SS) have been identified and genotyped into > 700 sequence types (ST) by multilocus sequence typing (MLST). Eurasian ST1 isolates are the most virulent of all S. suis SS2 strains while North American ST25 and ST28 strains display moderate to low/no virulence phenotypes, respectively. Notably, S. suis 90-1330 is an avirulent Canadian SS2-ST28 isolate producing a lantibiotic bacteriocin with potential prophylactic applications. To investigate…

Read More »

Tuesday, April 21, 2020

Genomic characterization of Nocardia seriolae strains isolated from diseased fish.

Members of the genus Nocardia are widespread in diverse environments; a wide range of Nocardia species are known to cause nocardiosis in several animals, including cat, dog, fish, and humans. Of the pathogenic Nocardia species, N. seriolae is known to cause disease in cultured fish, resulting in major economic loss. We isolated two N. seriolae strains, CK-14008 and EM15050, from diseased fish and sequenced their genomes using the PacBio sequencing platform. To identify their genomic features, we compared their genomes with those of other Nocardia species. Phylogenetic analysis showed that N. seriolae shares a common ancestor with a putative human…

Read More »

Tuesday, April 21, 2020

First report of isolation and complete genome of Vibrio rotiferianus strain SSVR1601 from cage-cultured black rockfish (Sebastes schlegelii) associated with skin ulcer.

Vibrio rotiferianus is an important marine pathogen of various aquatic organisms and can be found widely distributed in the marine environment. To further characterize this pathogen, the pathogenic properties and genome of V. rotiferianus SSVR1601 isolated from Sebastes schlegelii with skin ulcer were analysed. SSVR1601 was shown to be short rod-shaped cell with a single polar flagellum. Different degrees of pathological changes in fish kidney, intestine, gills and liver were observed after SSVR1601 challenge. The SSVR1601 genome consists of two chromosomes and two plasmids with a total of 5,717,113 bp, 42.04%-44.93% GC content, 5,269 predicted CDSs, 134 tRNAs and 40 rRNAs. The…

Read More »

Tuesday, April 21, 2020

Evolution of a major bovine mastitic genotype (rpoB sequence type 10-2) of Staphylococcus aureus in cows.

Staphylococcus aureus is the major pathogen leading to bovine mastitis globally while livestock-associated methicillin resistant S. aureus (LA-MRSA) has become a potential threat to public health. MRSA from bovine mastitis is not common but a methicillin susceptible S. aureus (MSSA) genotype, rpoB sequence type (RST)10-2 (RST10-2), is prevalent in Korea. To date, many genomic sequences from S. aureus have been elucidated, but the complete genome sequences of RST10-2 MSSA from bovine mastitis has never been reported. In this study, we determined the complete genome sequence of two RST10-2 MSSA that differ from each other in staphylococcal protein A and molecular…

Read More »

Tuesday, April 21, 2020

One Aeromonas salmonicida subsp. salmonicida isolate with a pAsa5 variant bearing antibiotic resistance and a pRAS3 variant making a link with a swine pathogen.

The Gram-negative bacterium Aeromonas salmonicida subsp. salmonicida is an aquatic pathogen which causes furunculosis to salmonids, especially in fish farms. The emergence of strains of this bacterium exhibiting antibiotic resistance is increasing, limiting the effectiveness of antibiotherapy as a treatment against this worldwide disease. In the present study, we discovered an isolate of A. salmonicida subsp. salmonicida that harbors two novel plasmids variants carrying antibiotic resistance genes. The use of long-read sequencing (PacBio) allowed us to fully characterize those variants, named pAsa5-3432 and pRAS3-3432, which both differ from their classic counterpart through their content in mobile genetic elements. The plasmid…

Read More »

Tuesday, April 21, 2020

Iron-associated protein interaction networks reveal the key functional modules related to survival and virulence of Pasteurella multocida.

Pasteurella multocida causes respiratory infectious diseases in a multitude of birds and mammals. A number of virulence-associated genes were reported across different strains of P. multocida, including those involved in the iron transport and metabolism. Comparative iron-associated genes of P. multocida among different animal hosts towards their interaction networks have not been fully revealed. Therefore, this study aimed to identify the iron-associated genes from core- and pan-genomes of fourteen P. multocida strains and to construct iron-associated protein interaction networks using genome-scale network analysis which might be associated with the virulence. Results showed that these fourteen strains had 1587 genes in…

Read More »

Tuesday, April 21, 2020

Real time monitoring of Aeromonas salmonicida evolution in response to successive antibiotic therapies in a commercial fish farm.

Our ability to predict evolutionary trajectories of pathogens in response to antibiotic pressure is one of the promising leverage to fight against the present antibiotic resistance worldwide crisis. Yet, few studies tackled this question in situ at the outbreak level, due to the difficulty to link a given pathogenic clone evolution with its precise antibiotic exposure over time. In this study, we monitored the real-time evolution of an Aeromonas salmonicida clone in response to successive antibiotic and vaccine therapies in a commercial fish farm. The clone was responsible for a four-year outbreak of furunculosis within a Recirculating Aquaculture System Salmo…

Read More »

Tuesday, April 21, 2020

Complete Genome Sequence of Photobacterium damselae Subsp. damselae Strain SSPD1601 Isolated from Deep-Sea Cage-Cultured Sebastes schlegelii with Septic Skin Ulcer.

Photobacterium damselae subsp. damselae (PDD) is a Gram-negative bacterium that can infect a variety of aquatic organisms and humans. Based on an epidemiological investigation conducted over the past 3 years, PDD is one of the most important pathogens causing septic skin ulcer in deep-sea cage-cultured Sebastes schlegelii in the Huang-Bohai Sea area and present throughout the year with high abundance. To further understand the pathogenicity of this species, the pathogenic properties and genome of PDD strain SSPD1601 were analyzed. The results revealed that PDD strain SSPD1601 is a rod-shaped cell with a single polar flagellum, and the clinical symptoms were…

Read More »

Tuesday, April 21, 2020

Analysis of the Complete Genome Sequence of a Novel, Pseudorabies Virus Strain Isolated in Southeast Europe.

Pseudorabies virus (PRV) is the causative agent of Aujeszky’s disease giving rise to significant economic losses worldwide. Many countries have implemented national programs for the eradication of this virus. In this study, long-read sequencing was used to determine the nucleotide sequence of the genome of a novel PRV strain (PRV-MdBio) isolated in Serbia.In this study, a novel PRV strain was isolated and characterized. PRV-MdBio was found to exhibit similar growth properties to those of another wild-type PRV, the strain Kaplan. Single-molecule real-time (SMRT) sequencing has revealed that the new strain differs significantly in base composition even from strain Kaplan, to…

Read More »

Tuesday, April 21, 2020

Genomic analyses of two Alteromonas stellipolaris strains reveal traits with potential biotechnological applications.

The Alteromonas stellipolaris strains PQQ-42 and PQQ-44, previously isolated from a fish hatchery, have been selected on the basis of their strong quorum quenching (QQ) activity, as well as their ability to reduce Vibrio-induced mortality on the coral Oculina patagonica. In this study, the genome sequences of both strains were determined and analyzed in order to identify the mechanism responsible for QQ activity. Both PQQ-42 and PQQ-44 were found to degrade a wide range of N-acylhomoserine lactone (AHL) QS signals, possibly due to the presence of an aac gene which encodes an AHL amidohydrolase. In addition, the different colony morphologies…

Read More »

Tuesday, April 21, 2020

ICESsuHN105, a Novel Multiple Antibiotic Resistant ICE in Streptococcus suis Serotype 5 Strain HN105.

Streptococcussuis serotype 5, an emerging zoonosis bacterial pathogen, has been isolated from infections in both pigs and humans. In this study, we sequenced the first complete genome of a virulent, multidrug-resistant SS5 strain HN105. The strain HN105 displayed enhanced pathogenicity in zebrafish and BABL/c mouse infection models. Comparative genome analysis identified a novel 80K integrative conjugative element (ICE), ICESsuHN105, as required for the multidrug resistance phenotype. Six corresponding antibiotic resistance genes in this ICE were identified, namely tet (O), tet (M), erm (two copies), aph, and spc. Phylogenetic analysis classified the element as a homolog of the ICESa2603 family, containing…

Read More »

Tuesday, April 21, 2020

Long-read sequencing reveals a 4.4 kb tandem repeat region in the mitogenome of Echinococcus granulosus (sensu stricto) genotype G1.

Echinococcus tapeworms cause a severe helminthic zoonosis called echinococcosis. The genus comprises various species and genotypes, of which E. granulosus (sensu stricto) represents a significant global public health and socioeconomic burden. Mitochondrial (mt) genomes have provided useful genetic markers to explore the nature and extent of genetic diversity within Echinococcus and have underpinned phylogenetic and population structure analyses of this genus. Our recent work indicated a sequence gap (>?1 kb) in the mt genomes of E. granulosus genotype G1, which could not be determined by PCR-based Sanger sequencing. The aim of the present study was to define the complete mt genome,…

Read More »

Tuesday, April 21, 2020

Survival Mechanisms of Campylobacter hepaticus Identified by Genomic Analysis and Comparative Transcriptomic Analysis of in vivo and in vitro Derived Bacteria.

Chickens infected with Campylobacter jejuni or Campylobacter coli are largely asymptomatic, however, infection with the closely related species, Campylobacter hepaticus, can result in Spotty Liver Disease (SLD). C. hepaticus has been detected in the liver, bile, small intestine and caecum of SLD affected chickens. The survival and colonization mechanisms that C. hepaticus uses to colonize chickens remain unknown. In this study, we compared the genome sequences of 14 newly sequenced Australian isolates of C. hepaticus, isolates from outbreaks in the United Kingdom, and reference strains of C. jejuni and C. coli, with the aim of identifying virulence genes associated with…

Read More »

1 2 3 4 21

Subscribe for blog updates:

Archives