Menu
July 7, 2019  |  

Complete genome sequence of MIDG2331, a genetically tractable serovar 8 clinical isolate of Actinobacillus pleuropneumoniae.

We report here the complete annotated genome sequence of a clinical serovar 8 isolate Actinobacillus pleuropneumoniae MIDG2331. Unlike the serovar 8 reference strain 405, MIDG2331 is amenable to genetic manipulation via natural transformation as well as conjugation, making it ideal for studies of gene function. Copyright © 2016 Bossé et al.


July 7, 2019  |  

First complete genome sequence of Tenacibaculum dicentrarchi, an emerging bacterial pathogen of salmonids.

Tenacibaculum-like bacilli have recently been isolated from diseased sea-reared Atlantic salmon in outbreaks that took place in the XI region (Región de Aysén) of Chile. Molecular typing identified the bacterium as Tenacibaculum dicentrarchi. Here, we report the complete genome sequence of the AY7486TD isolate recovered during those outbreaks. Copyright © 2016 Grothusen et al.


July 7, 2019  |  

Dissemination of the mcr-1 colistin resistance gene.

Since our first report on plasmid- mediated colistin resistance gene mcr-1,1 strains previously collected in seven countries (Denmark, the Netherlands, Laos, Nigeria, Thailand, France, and the UK) have been found to carry mcr-1.2–6 Furthermore, the sequences in GenBank show that mcr-1 might also be circulating in Portugal and Malaysia. The earliest mcr-1- positive strain was collected from cattle in France in 2008 (GenBank accession number LMBK01000308). These findings confirm our initial concern that mcr-1 could have already disseminated worldwide.


July 7, 2019  |  

Complete genome sequence of probiotic Lactobacillus reuteri ZLR003 isolated from healthy weaned pig.

Lactobacillus reuteri ZLR003 was isolated from the caecum mucosa of healthy weaned pigs with displaying probiotic properties in our laboratory. Here, we present the complete genome sequence of L. reuteri ZLR003, which consists of a circular 2, 234, 097bp chromosome (G+C content of 38.66%). Such information will provide insights into the molecular mechanism of its probiotic activity and facilitate its application in animal production. Copyright © 2016. Published by Elsevier B.V.


July 7, 2019  |  

Complete genome sequence of pseudorabies virus reference strain NIA3 using single-molecule real-time sequencing.

Pseudorabies virus (PRV) is the causative agent of Aujeszky’s disease in pigs. PRV strains are also used as model organisms for the study of alphaherpesvirus biology or for neuronal pathway studies. We present here the complete genome of the virulent wild-type PRV reference strain NIA3, determined by single-molecule real-time sequencing. Copyright © 2016 Mathijs et al.


July 7, 2019  |  

Complete genome sequence of highly virulent Haemophilus parasuis serotype 11 strain SC1401.

Haemophilus parasuis, a normal Gram-negative bacterium, may cause Glässer’s disease and pneumonia in pigs. This study aims to identify the genes related to natural competence of the serotype 11 strain SC1401, which frequently shows competence and high pathogenicity. SC1401 shows many differences from strains without natural competence within the molecular basis. We performed complete genome sequencing together with restriction modification system analysis to lay the foundation for later study. Copyright © 2016 Dai et al.


July 7, 2019  |  

Structural basis for recombinatorial permissiveness in the generation of Anaplasma marginale Msp2 antigenic variants.

Sequential expression of outer membrane protein antigenic variants is an evolutionarily convergent mechanism used by bacterial pathogens to escape host immune clearance and establish persistent infection. Variants must be sufficiently structurally distinct to escape existing immune effectors yet retain core structural elements required for localization and function within the outer membrane. We examined this balance using Anaplasma marginale, which generates antigenic variants in the outer membrane protein Msp2 using gene conversion. The overwhelming majority of Msp2 variants expressed during long-term persistent infection are mosaics, derived by recombination of oligonucleotide segments from multiple alleles to form unique hypervariable regions (HVR). As a result, the mosaics are not under long-term selective pressure to encode a functional protein; consequently, we hypothesized that the Msp2 HVR is structurally permissive for mosaic expression. Using an integrated approach of predictive modeling with determination of native Msp2 protein structure and function, we demonstrate that structured elements, most notably ß-sheets, are significantly concentrated in the highly conserved N- and C-terminal domains. In contrast the HVR is overwhelmingly random coil with the structured a-helices and ß-sheets confined to the genomically defined “structural tethers” that separate the antigenically variable microdomains. This structure is supported by the surface exposure of the HVR microdomains and the slow diffusion type porin function in native Msp2. Importantly, the predominance of random coil provides plasticity for formation of functional HVR mosaics and realization of the full potential of segmental gene conversion to dramatically expand the variant repertoire. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

High-quality genome assembly and annotation for Plasmodium coatneyi, generated using single-molecule real-time PacBio technology.

Plasmodium coatneyi is a protozoan parasite species that causes simian malaria and is an excellent model for studying disease caused by the human malaria parasite, P. falciparum Here we report the complete (nontelomeric) genome sequence of P. coatneyi Hackeri generated by the application of only Pacific Biosciences RS II (PacBio RS II) single-molecule real-time (SMRT) high-resolution sequence technology and assembly using the Hierarchical Genome Assembly Process (HGAP). This is the first Plasmodium genome sequence reported to use only PacBio technology. This approach has proven to be superior to short-read only approaches for this species. Copyright © 2016 Chien et al.


July 7, 2019  |  

Isolation and plasmid characterization of carbapenemase (IMP-4) producing Salmonella enterica Typhimurium from cats.

Carbapenem-resistant Enterobacteriaceae (CRE) are a pressing public health issue due to limited therapeutic options to treat such infections. CREs have been predominantly isolated from humans and environmental samples and they are rarely reported among companion animals. In this study we report on the isolation and plasmid characterization of carbapenemase (IMP-4) producing Salmonella enterica Typhimurium from a companion animal. Carbapenemase-producing S. enterica Typhimurium carrying blaIMP-4 was identified from a systemically unwell (index) cat and three additional cats at an animal shelter. All isolates were identical and belonged to ST19. Genome sequencing revealed the acquisition of a multidrug-resistant IncHI2 plasmid (pIMP4-SEM1) that encoded resistance to nine antimicrobial classes including carbapenems and carried the blaIMP-4-qacG-aacA4-catB3 cassette array. The plasmid also encoded resistance to arsenic (MIC-150?mM). Comparative analysis revealed that the plasmid pIMP4-SEM1 showed greatest similarity to two blaIMP-8 carrying IncHI2 plasmids from Enterobacter spp. isolated from humans in China. This is the first report of CRE carrying a blaIMP-4 gene causing a clinical infection in a companion animal, with presumed nosocomial spread. This study illustrates the broader community risk entailed in escalating CRE transmission within a zoonotic species such as Salmonella, and in a cycle that encompasses humans, animals and the environment.


July 7, 2019  |  

Divergent isoprenoid biosynthesis pathways in Staphylococcus species constitute a drug target for treating infections in companion animals.

Staphylococcus species are a leading cause of skin and soft tissue infections in humans and animals, and the antibiotics used to treat these infections are often the same. Methicillin- and multidrug-resistant staphylococcal infections are becoming more common in human and veterinary medicine. From a “One Health” perspective, this overlap in antibiotic use and resistance raises concerns over the potential spread of antibiotic resistance genes. Whole-genome sequencing and comparative genomics analysis revealed that Staphylococcus species use divergent pathways to synthesize isoprenoids. Species frequently associated with skin and soft tissue infections in companion animals, including S. schleiferi and S. pseudintermedius, use the nonmevalonate pathway. In contrast, S. aureus, S. epidermidis, and S. lugdunensis use the mevalonate pathway. The antibiotic fosmidomycin, an inhibitor of the nonmevalonate pathway, was effective in killing canine clinical staphylococcal isolates but had no effect on the growth or survival of S. aureus and S. epidermidis. These data identify an essential metabolic pathway in Staphylococcus that differs among members of this genus and suggest that drugs such as fosmidomycin, which targets enzymes in the nonmevalonate pathway, may be an effective treatment for certain staphylococcal infections. IMPORTANCE Drug-resistant Staphylococcus species are a major concern in human and veterinary medicine. There is a need for new antibiotics that exhibit a selective effect in treating infections in companion and livestock animals and that would not be used to treat human bacterial infections. We have identified fosmidomycin as an antibiotic that selectively targets certain Staphylococcus species that are often encountered in skin infections in cats and dogs. These findings expand our understanding of Staphylococcus evolution and may have direct implications for treating staphylococcal infections in veterinary medicine.


July 7, 2019  |  

Genomic recombination leading to decreased virulence of group B Streptococcus in a mouse model of adult invasive disease.

Adult invasive disease caused by Group B Streptococcus (GBS) is increasing worldwide. Whole-genome sequencing (WGS) now permits rapid identification of recombination events, a phenomenon that occurs frequently in GBS. Using WGS, we described that strain NGBS375, a capsular serotype V GBS isolate of sequence type (ST)297, has an ST1 genomic background but has acquired approximately 300 kbp of genetic material likely from an ST17 strain. Here, we examined the virulence of this strain in an in vivo model of GBS adult invasive infection. The mosaic ST297 strain showed intermediate virulence, causing significantly less systemic infection and reduced mortality than a more virulent, serotype V ST1 isolate. Bacteremia induced by the ST297 strain was similar to that induced by a serotype III ST17 strain, which was the least virulent under the conditions tested. Yet, under normalized bacteremia levels, the in vivo intrinsic capacity to induce the production of pro-inflammatory cytokines was similar between the ST297 strain and the virulent ST1 strain. Thus, the diminished virulence of the mosaic strain may be due to reduced capacity to disseminate or multiply in blood during a systemic infection which could be mediated by regulatory factors contained in the recombined region.


July 7, 2019  |  

Persistence of a dominant bovine lineage of group B Streptococcus reveals genomic signatures of host adaptation.

Group B Streptococcus (GBS) is a host-generalist species, most notably causing disease in humans and cattle. However, the differential adaptation of GBS to its two main hosts, and the risk of animal to human infection remain poorly understood. Despite improvements in control measures across Europe, GBS is still one of the main causative agents of bovine mastitis in Portugal. Here, by whole-genome analysis of 150 bovine GBS isolates we discovered that a single CC61 clone is spreading throughout Portuguese herds since at least the early 1990s, having virtually replaced the previous GBS population. Mutations within an iron/manganese transporter were independently acquired by all of the CC61 isolates, underlining a key adaptive strategy to persist in the bovine host. Lateral transfer of bacteriocin production and antibiotic resistance genes also underscored the contribution of the microbial ecology and genetic pool within the bovine udder environment to the success of this clone. Compared to strains of human origin, GBS evolves twice as fast in bovines and undergoes recurrent pseudogenizations of human-adapted traits. Our work provides new insights into the potentially irreversible adaptation of GBS to the bovine environment. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.