July 7, 2019  |  


The Glaucophyta is by far the least species-rich phylum of the Archaeplastida comprising only four described genera, Glaucocystis, Cyanophora, Gloeochaete, and Cyanoptyche, and 15 species. However, recent molecular and morphological analyses reveal that glaucophytes are not as species poor as hitherto assumed with many novel lineages existing in natural environments. Glaucophytes are freshwater phototrophs of moderate to low abundance and retain many ancestral plastid traits derived from the cyanobacterial donor of this organelle, including the remnant peptidoglycan wall in their envelope. These plastids were originally named “cyanelles,” which was later changed to “muroplasts” when their shared ancestry with other Archaeplastida was recognized. The model glaucophyte, Cyanophora paradoxa, is well studied with respect to biochemistry, proteomics, and the gene content of the nuclear and organelle genomes. Investigation of the biosynthesis of cytosolic starch led to a model for the transition from glycogen to starch storage during plastid endosymbiosis. The photosynthetic apparatus, including phycobilisome antennae, resembles that of cyanobacteria. However, the carbon-concentrating mechanism is algal in nature and based on pyrenoids. Studies on protein import into muroplasts revealed a primordial Toc/Tic translocon. The peptidoglycan wall was elucidated with respect to composition, biosynthesis, and involvement of nuclear genes. The muroplast genome is distinct, not due to the number of encoded genes but, rather, because of the presence of unique genes not present on other plastid genomes. The mosaic nature of the gene-rich (27,000) nuclear genome came as a surprise, considering the relatively small genomes of unicellular red algae.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.