Menu
July 7, 2019  |  

Draft nuclear genome sequence of the liquid hydrocarbon–accumulating green microalga Botryococcus braunii race B (Showa).

Botryococcus braunii has long been known as a prodigious producer of liquid hydrocarbon oils that can be converted into combustion engine fuels. This draft genome for the B race of B. braunii will allow researchers to unravel important hydrocarbon biosynthetic pathways and identify possible regulatory networks controlling this unusual metabolism. Copyright © 2017 Browne et al.


July 7, 2019  |  

Chromosome-level genome assembly and transcriptome of the green alga Chromochloris zofingiensis illuminates astaxanthin production.

Microalgae have potential to help meet energy and food demands without exacerbating environmental problems. There is interest in the unicellular green alga Chromochloris zofingiensis, because it produces lipids for biofuels and a highly valuable carotenoid nutraceutical, astaxanthin. To advance understanding of its biology and facilitate commercial development, we present a C. zofingiensis chromosome-level nuclear genome, organelle genomes, and transcriptome from diverse growth conditions. The assembly, derived from a combination of short- and long-read sequencing in conjunction with optical mapping, revealed a compact genome of ~58 Mbp distributed over 19 chromosomes containing 15,274 predicted protein-coding genes. The genome has uniform gene density over chromosomes, low repetitive sequence content (~6%), and a high fraction of protein-coding sequence (~39%) with relatively long coding exons and few coding introns. Functional annotation of gene models identified orthologous families for the majority (~73%) of genes. Synteny analysis uncovered localized but scrambled blocks of genes in putative orthologous relationships with other green algae. Two genes encoding beta-ketolase (BKT), the key enzyme synthesizing astaxanthin, were found in the genome, and both were up-regulated by high light. Isolation and molecular analysis of astaxanthin-deficient mutants showed that BKT1 is required for the production of astaxanthin. Moreover, the transcriptome under high light exposure revealed candidate genes that could be involved in critical yet missing steps of astaxanthin biosynthesis, including ABC transporters, cytochrome P450 enzymes, and an acyltransferase. The high-quality genome and transcriptome provide insight into the green algal lineage and carotenoid production.


July 7, 2019  |  

Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta).

Porphyra umbilicalis (laver) belongs to an ancient group of red algae (Bangiophyceae), is harvested for human food, and thrives in the harsh conditions of the upper intertidal zone. Here we present the 87.7-Mbp haploid Porphyra genome (65.8% G + C content, 13,125 gene loci) and elucidate traits that inform our understanding of the biology of red algae as one of the few multicellular eukaryotic lineages. Novel features of the Porphyra genome shared by other red algae relate to the cytoskeleton, calcium signaling, the cell cycle, and stress-tolerance mechanisms including photoprotection. Cytoskeletal motor proteins in Porphyra are restricted to a small set of kinesins that appear to be the only universal cytoskeletal motors within the red algae. Dynein motors are absent, and most red algae, including Porphyra, lack myosin. This surprisingly minimal cytoskeleton offers a potential explanation for why red algal cells and multicellular structures are more limited in size than in most multicellular lineages. Additional discoveries further relating to the stress tolerance of bangiophytes include ancestral enzymes for sulfation of the hydrophilic galactan-rich cell wall, evidence for mannan synthesis that originated before the divergence of green and red algae, and a high capacity for nutrient uptake. Our analyses provide a comprehensive understanding of the red algae, which are both commercially important and have played a major role in the evolution of other algal groups through secondary endosymbioses.


July 7, 2019  |  

Building a locally diploid genome and transcriptome of the diatom Fragilariopsis cylindrus.

The genome of the cold-adapted diatom Fragilariopsis cylindrus is characterized by highly diverged haplotypes that intersperse its homozygous genome. Here, we describe how a combination of PacBio DNA and Illumina RNA sequencing can be used to resolve this complex genomic landscape locally into the highly diverged haplotypes, and how to map various environmentally controlled transcripts onto individual haplotypes. We assembled PacBio sequence data with the FALCON assembler and created a haplotype resolved annotation of the assembly using annotations of a Sanger sequenced F. cylindrus genome. RNA-seq datasets from six different growth conditions were used to resolve allele-specifc gene expression in F. cylindrus. This approach enables to study differential expression of alleles in a complex genomic landscape and provides a useful tool to study how diverged haplotypes in diploid organisms are used for adaptation and evolution to highly variable environments.


July 7, 2019  |  

Draft nuclear genome sequence of the halophilic and beta-carotene-accumulating green alga Dunaliella salina strain CCAP19/18.

The halotolerant alga Dunaliella salina is a model for stress tolerance and is used commercially for production of beta-carotene (=pro-vitamin A). The presented draft genome of the genuine strain CCAP19/18 will allow investigations into metabolic processes involved in regulation of stress responses, including carotenogenesis and adaptations to life in high-salinity environments. Copyright © 2017 Polle et al.


July 7, 2019  |  

The plastid genome in Cladophorales green algae is encoded by hairpin chromosomes.

Virtually all plastid (chloroplast) genomes are circular double-stranded DNA molecules, typically between 100 and 200 kb in size and encoding circa 80-250 genes. Exceptions to this universal plastid genome architecture are very few and include the dinoflagellates, where genes are located on DNA minicircles. Here we report on the highly deviant chloroplast genome of Cladophorales green algae, which is entirely fragmented into hairpin chromosomes. Short- and long-read high-throughput sequencing of DNA and RNA demonstrated that the chloroplast genes of Boodlea composita are encoded on 1- to 7-kb DNA contigs with an exceptionally high GC content, each containing a long inverted repeat with one or two protein-coding genes and conserved non-coding regions putatively involved in replication and/or expression. We propose that these contigs correspond to linear single-stranded DNA molecules that fold onto themselves to form hairpin chromosomes. The Boodlea chloroplast genes are highly divergent from their corresponding orthologs, and display an alternative genetic code. The origin of this highly deviant chloroplast genome most likely occurred before the emergence of the Cladophorales, and coincided with an elevated transfer of chloroplast genes to the nucleus. A chloroplast genome that is composed only of linear DNA molecules is unprecedented among eukaryotes, and highlights unexpected variation in plastid genome architecture. Copyright © 2017 Elsevier Ltd. All rights reserved.


July 7, 2019  |  

Complete genome of brown algal polysaccharides-degrading Pseudoalteromonas issachenkonii KCTC 12958(T) (=KMM 3549(T)).

Pseudoalteromonas issachenkonii is a Gram-negative, rod-shaped, flagellated, aerobic, chemoorganotrophic marine bacterium that was isolated from the thallus of Fucus evanescens (marine brown macroalgae) sampled from the Kraternaya Bight of the Kurile Islands in the Pacific Ocean. Here, we report the complete genome of P. issachenkonii KCTC 12958(T) (=KMM 3549(T)=LMG 19697(T)=CIP 106858(T)), which consists of 4,131,541bp (G+C content of 40.3%) with two chromosomes, 3538 protein-coding genes, 102 tRNAs and 8 rRNA operons. Several genes related to glycoside hydrolases, proteases, and bacteriolytic- and hemolytic activities were detected in the genome that help explain how the strain mediates degradation of algal cell wall and decomposes algal polysaccharides into industrially applicable products. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Hyper-eccentric structural genes in the mitochondrial genome of the algal parasite Hemistasia phaeocysticola.

Diplonemid mitochondria are considered to have very eccentric structural genes. Coding regions of individual diplonemid mitochondrial genes are fragmented into small pieces and found on different circular DNAs. Short RNAs transcribed from each DNA molecule mature through a unique RNA maturation process involving assembly and three types of RNA editing (i.e., U insertion and A-to-I & C-to-U substitutions), although the molecular mechanism(s) of RNA maturation and the evolutionary history of these eccentric structural genes still remain to be understood. Since the gene fragmentation pattern is generally conserved among the diplonemid species studied to date, it was considered that their structural complexity has plateaued and further gene fragmentation could not occur. Here, we show the mitochondrial gene structure of Hemistasia phaeocysticola, which was recently identified as a member of a novel lineage in diplonemids, by comparison of the mitochondrial DNA sequences with cDNA sequences synthesized from mature mRNA. The genes of H. phaeocysticola are fragmented much more finely than those of other diplonemids studied to date. Furthermore, in addition to all known types of RNA editing, it is suggested that a novel processing step (i.e., secondary RNA insertion) is involved in the RNA maturation in the mitochondria of H. phaeocysticola Our findings demonstrate the tremendous plasticity of mitochondrial gene structures.© The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

A viral immunity chromosome in the marine picoeukaryote, Ostreococcus tauri.

Micro-algae of the genus Ostreococcus and related species of the order Mamiellales are globally distributed in the photic zone of world’s oceans where they contribute to fixation of atmospheric carbon and production of oxygen, besides providing a primary source of nutrition in the food web. Their tiny size, simple cells, ease of culture, compact genomes and susceptibility to the most abundant large DNA viruses in the sea render them attractive as models for integrative marine biology. In culture, spontaneous resistance to viruses occurs frequently. Here, we show that virus-producing resistant cell lines arise in many independent cell lines during lytic infections, but over two years, more and more of these lines stop producing viruses. We observed sweeping over-expression of all genes in more than half of chromosome 19 in resistant lines, and karyotypic analyses showed physical rearrangements of this chromosome. Chromosome 19 has an unusual genetic structure whose equivalent is found in all of the sequenced genomes in this ecologically important group of green algae.


July 7, 2019  |  

Characterization of a new chlorovirus type with permissive and non-permissive features on phylogenetically related algal strains.

A previous report indicated that prototype chlorovirus PBCV-1 replicated in two Chlorella variabilis algal strains, NC64A and Syngen 2-3, that are ex-endosymbionts isolated from the protozoan Paramecium bursaria. Surprisingly, plaque-forming viruses on Syngen 2-3 lawns were often higher than on NC64A lawns from indigenous water samples. These differences led to the discovery of viruses that exclusively replicate in Syngen 2-3 cells, named Only Syngen (OSy) viruses. OSy-NE5, the prototype virus for the proposed new species, had a linear dsDNA genome of 327kb with 44-nucleotide-long, incompletely base-paired, covalently closed hairpin ends. Each hairpin structure was followed by an identical 2612 base-paired inverted sequence after which the DNA sequence diverged. OSy-NE5 encoded 357 predicted CDSs and 13 tRNAs. Interestingly, OSy-NE5 attached to and initiated infection in NC64A cells but infectious progeny viruses were not produced; thus OSy-NE5 replication in NC64A is blocked at some later stage of replication. Copyright © 2016 Elsevier Inc. All rights reserved.


July 7, 2019  |  

The mechanisms whereby the green alga Chlorella ohadii, isolated from desert soil crust, exhibits unparalleled photodamage resistance.

Excess illumination damages the photosynthetic apparatus with severe implications with regard to plant productivity. Unlike model organisms, the growth of Chlorella ohadii, isolated from desert soil crust, remains unchanged and photosynthetic O2 evolution increases, even when exposed to irradiation twice that of maximal sunlight. Spectroscopic, biochemical and molecular approaches were applied to uncover the mechanisms involved. D1 protein in photosystem II (PSII) is barely degraded, even when exposed to antibiotics that prevent its replenishment. Measurements of various PSII parameters indicate that this complex functions differently from that in model organisms and suggest that C. ohadii activates a nonradiative electron recombination route which minimizes singlet oxygen formation and the resulting photoinhibition. The light-harvesting antenna is very small and carotene composition is hardly affected by excess illumination. Instead of succumbing to photodamage, C. ohadii activates additional means to dissipate excess light energy. It undergoes major structural, compositional and physiological changes, leading to a large rise in photosynthetic rate, lipids and carbohydrate content and inorganic carbon cycling. The ability of C. ohadii to avoid photodamage relies on a modified function of PSII and the dissipation of excess reductants downstream of the photosynthetic reaction centers. The biotechnological potential as a gene source for crop plant improvement is self-evident.© 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.


July 7, 2019  |  

Complete genome sequence and transcriptomic analysis of a novel marine strain Bacillus weihaiensis reveals the mechanism of brown algae degradation.

A novel marine strain representing efficient degradation ability toward brown algae was isolated, identified, and assigned to Bacillus weihaiensis Alg07. The alga-associated marine bacteria promote the nutrient cycle and perform important functions in the marine ecosystem. The de novo sequencing of the B. weihaiensis Alg07 genome was carried out. Results of gene annotation and carbohydrate-active enzyme analysis showed that the strain harbored enzymes that can completely degrade alginate and laminarin, which are the specific polysaccharides of brown algae. We also found genes for the utilization of mannitol, the major storage monosaccharide in the cell of brown algae. To understand the process of brown algae decomposition by B. weihaiensis Alg07, RNA-seq transcriptome analysis and qRT-PCR were performed. The genes involved in alginate metabolism were all up-regulated in the initial stage of kelp degradation, suggesting that the strain Alg07 first degrades alginate to destruct the cell wall so that the laminarin and mannitol are released and subsequently decomposed. The key genes involved in alginate and laminarin degradation were expressed in Escherichia coli and characterized. Overall, the model of brown algae degradation by the marine strain Alg07 was established, and novel alginate lyases and laminarinase were discovered.


July 7, 2019  |  

DNA extraction protocols for whole-genome sequencing in marine organisms.

The marine environment harbors a large proportion of the total biodiversity on this planet, including the majority of the earths’ different phyla and classes. Studying the genomes of marine organisms can bring interesting insights into genome evolution. Today, almost all marine organismal groups are understudied with respect to their genomes. One potential reason is that extraction of high-quality DNA in sufficient amounts is challenging for many marine species. This is due to high polysaccharide content, polyphenols and other secondary metabolites that will inhibit downstream DNA library preparations. Consequently, protocols developed for vertebrates and plants do not always perform well for invertebrates and algae. In addition, many marine species have large population sizes and, as a consequence, highly variable genomes. Thus, to facilitate the sequence read assembly process during genome sequencing, it is desirable to obtain enough DNA from a single individual, which is a challenge in many species of invertebrates and algae. Here, we present DNA extraction protocols for seven marine species (four invertebrates, two algae, and a marine yeast), optimized to provide sufficient DNA quality and yield for de novo genome sequencing projects.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.