Jonas Korlach, of PacBio, discusses the use of SMRT sequencing to detect DNA modifications.
Ellen Paxinos, a scientist at PacBio, shares her AGBT poster on work done in collaboration with reference lab Monogram Biosciences using Single Molecule, Real-Time (SMRT) sequencing to detect minor species and variants in HCV. Using two genotypes mixed together, the team was able to detect variants down to 1% and to identify both viral haplotypes from the data. Paxinos says the study is a model for looking at genomic variation in chronic viral infection.
Mario Caccamo, head of bioinformatics at The Genome Analysis Centre (TGAC) in the UK, integrates many different sequencing technologies to get the best of each for optimal genome assemblies, analysis, and annotation. He uses PacBio’s SMRT Sequencing due to its unique long reads for scaffolding and finishing genomes.
Mario Caccamo, head of bioinformatics at The Genome Analysis Centre (TGAC) in the UK, integrates many different sequencing technologies to get the best of each for optimal genome assemblies, analysis, and annotation. He uses PacBio’s SMRT Sequencing due to its unique long reads for scaffolding and finishing genomes.
Bart Weimer, a professor at the University of California, Davis, who is leading the 100K Foodborne Pathogen Genome Project, talks about using PacBio sequencing to produce long reads for microbial genomes as well as to study how bacteria use epigenetics to regulate gene expression.
Commentary from PacBio users on their applications of SMRT Sequencing, including Ulf Gyllensten (Uppsala University), Tim Smith (USDA-ARS) and Bobby Sebra (Icahn School of Medicine)
PacBio customers discuss their applications of PacBio SMRT Sequencing and long reads, including Lemuel Racacho (Children’s Hospital of Eastern Ontario Research Institute), Matthew Blow (JGI), Yuta Suzuki (U. of Tokyo), Daniel Geraghty (Fred Hutchinson Cancer Center), and Mike Schatz (CSHL)
PacBio customers and thought leaders discuss the role SMRT sequencing is playing in comprehensive genomics: past, present, and future. Featuring J. Craig Venter, Gene Myers, Deanna Church, Jeong-Sun Seo and W. Richard McCombie.
Fritz Sedlazeck, a postdoc at Johns Hopkins University, describes his structural variant detection tool Sniffles in this poster from AGBT 2016. Included: examples of structural variants that could not be detected with other algorithms.
Early detection of colorectal cancer (CRC) and its precursor lesions (adenomas) is crucial to reduce mortality rates. The fecal immunochemical test (FIT) is a non-invasive CRC screening test that detects the blood-derived protein hemoglobin. However, FIT sensitivity is suboptimal especially in detection of CRC precursor lesions. As adenoma-to-carcinoma progression is accompanied by alternative splicing, tumor-specific proteins derived from alternatively spliced RNA transcripts might serve as candidate biomarkers for CRC detection.
In this AGBT 2017 poster, Ulf Gyllensten from Uppsala University presents two local reference genomes generated with PacBio and Bionano Genomics data. These assemblies include structural variation and repetitive regions that have been missed with previous short-read efforts, including some new genes not annotated in the human reference genome.
At AGBT 2017, Lars Paulin from the University of Helsinki presented this poster on whole genome sequencing of the virus responsible for progressive multifocal leukoencephalopathy, a rare and dangerous brain infection. His team used long amplicon analysis to resolve the whole virus genome from three patient samples, pooled them for SMRT Sequencing, and identified variants and rearrangements. This work represents the first time the viral genome was sequenced from patients.
In a poster presented at AGBT 2017, Fritz Sedlazeck from Johns Hopkins University describes the comparison of genome assemblies produced using long-read PacBio sequencing and short-read sequencing with 10x Genomics scaffolding. An alignment reveals regions missed by the short-read assembly, including repeats, exons, and even whole genes.
Adam Ameur from the National Genomics Infrastructure at SciLifeLab presented this poster at AGBT 2017. In it, he details a validation study for the use of CRISPR/Cas9 to capture genomic targets without the use of amplification. Results from 12 Huntington’s patients indicate that this approach paired with SMRT Sequencing generates accurate repeat counts in the HTT gene.
In this AGBT presentation, Marty Badgett shares a look at the latest results from circular consensus sequencing (CCS) mode for highly accurate reads and data from our soon-to-be-released Sequel II System. As he demonstrates, CCS reads cover the same molecule many times, delivering high consensus accuracy despite noisy raw reads; on average, reaching 10 passes achieves Q30 accuracy. Badgett offers several examples where this is useful, such as pharmacogenomic gene analysis and resolving metagenomic communities. He also provides an update on the Iso-Seq method, which can now segregate transcripts into haplotype-specific alleles using a new tool called Iso-Phase.