Menu
July 19, 2019  |  

Genome-directed lead discovery: biosynthesis, structure elucidation, and biological evaluation of two families of polyene macrolactams against Trypanosoma brucei.

Marine natural products are an important source of lead compounds against many pathogenic targets. Herein, we report the discovery of lobosamides A-C from a marine actinobacterium, Micromonospora sp., representing three new members of a small but growing family of bacterially produced polyene macrolactams. The lobosamides display growth inhibitory activity against the protozoan parasite Trypanosoma brucei (lobosamide A IC50 = 0.8 µM), the causative agent of human African trypanosomiasis (HAT). The biosynthetic gene cluster of the lobosamides was sequenced and suggests a conserved cluster organization among the 26-membered macrolactams. While determination of the relative and absolute configurations of many members of this family is lacking, the absolute configurations of the lobosamides were deduced using a combination of chemical modification, detailed spectroscopic analysis, and bioinformatics. We implemented a “molecules-to-genes-to-molecules” approach to determine the prevalence of similar clusters in other bacteria, which led to the discovery of two additional macrolactams, mirilactams A and B from Actinosynnema mirum. These additional analogs have allowed us to identify specific structure-activity relationships that contribute to the antitrypanosomal activity of this class. This approach illustrates the power of combining chemical analysis and genomics in the discovery and characterization of natural products as new lead compounds for neglected disease targets.


July 19, 2019  |  

Variable genetic architectures produce virtually identical molecules in bacterial symbionts of fungus-growing ants.

Small molecules produced by Actinobacteria have played a prominent role in both drug discovery and organic chemistry. As part of a larger study of the actinobacterial symbionts of fungus-growing ants, we discovered a small family of three previously unreported piperazic acid-containing cyclic depsipeptides, gerumycins A-C. The gerumycins are slightly smaller versions of dentigerumycin, a cyclic depsipeptide that selectively inhibits a common fungal pathogen, Escovopsis. We had previously identified this molecule from a Pseudonocardia associated with Apterostigma dentigerum, and now we report the molecule from an associate of the more highly derived ant Trachymyrmex cornetzi. The three previously unidentified compounds, gerumycins A-C, have essentially identical structures and were produced by two different symbiotic Pseudonocardia spp. from ants in the genus Apterostigma found in both Panama and Costa Rica. To understand the similarities and differences in the biosynthetic pathways that produced these closely related molecules, the genomes of the three producing Pseudonocardia were sequenced and the biosynthetic gene clusters identified. This analysis revealed that dramatically different biosynthetic architectures, including genomic islands, a plasmid, and the use of spatially separated genetic loci, can lead to molecules with virtually identical core structures. A plausible evolutionary model that unifies these disparate architectures is presented.


July 19, 2019  |  

Complete genome sequence of Tessaracoccus sp. strain T2.5-30 isolated from 139.5 meters deep on the subsurface of the Iberian Pyritic Belt.

Here, we report the complete genome sequence of Tessaracoccus sp. strain T2.5-30, which consists of a chromosome with 3.2 Mbp, 70.4% G+C content, and 3,005 coding DNA sequences. The strain was isolated from a rock core retrieved at a depth of 139.5 m in the subsurface of the Iberian Pyritic Belt (Spain). Copyright © 2017 Leandro et al.


July 19, 2019  |  

De novo assembly of genomes from long sequence reads reveals uncharted territories of Propionibacterium freudenreichii.

Propionibacterium freudenreichii is an industrially important bacterium granted the Generally Recognized as Safe (the GRAS) status, due to its long safe use in food bioprocesses. Despite the recognized role in the food industry and in the production of vitamin B12, as well as its documented health-promoting potential, P. freudenreichii remained poorly characterised at the genomic level. At present, only three complete genome sequences are available for the species.We used the PacBio RS II sequencing platform to generate complete genomes of 20 P. freudenreichii strains and compared them in detail. Comparative analyses revealed both sequence conservation and genome organisational diversity among the strains. Assembly from long reads resulted in the discovery of additional circular elements: two putative conjugative plasmids and three active, lysogenic bacteriophages. It also permitted characterisation of the CRISPR-Cas systems. The use of the PacBio sequencing platform allowed identification of DNA modifications, which in turn allowed characterisation of the restriction-modification systems together with their recognition motifs. The observed genomic differences suggested strain variation in surface piliation and specific mucus binding, which were validated by experimental studies. The phenotypic characterisation displayed large diversity between the strains in ability to utilise a range of carbohydrates, to grow at unfavourable conditions and to form a biofilm.The complete genome sequencing allowed detailed characterisation of the industrially important species, P. freudenreichii by facilitating the discovery of previously unknown features. The results presented here lay a solid foundation for future genetic and functional genomic investigations of this actinobacterial species.


July 7, 2019  |  

Genomics of methylotrophy in gram-positive methylamine-utilizing bacteria

Gram-positive methylotrophic bacteria have been known for a long period of time, some serving as model organisms for characterizing the specific details of methylotrophy pathways/enzymes within this group. However, genome-based knowledge of methylotrophy within this group has been so far limited to a single species, Bacillus methanolicus (Firmicutes). The paucity of whole-genome data for Gram-positive methylotrophs limits our global understanding of methylotrophy within this group, including their roles in specific biogeochemical cycles, as well as their biotechnological potential. Here, we describe the isolation of seven novel strains of Gram-positive methylotrophs that include two strains of Bacillus and five representatives of Actinobacteria classified within two genera, Arthrobacter and Mycobacterium. We report whole-genome sequences for these isolates and present comparative analysis of the methylotrophy functional modules within these genomes. The genomic sequences of these seven novel organisms, all capable of growth on methylated amines, present an important reference dataset for understanding the genomic basis of methylotrophy in Gram-positive methylotrophic bacteria. This study is a major contribution to the field of methylotrophy, aimed at closing the gap in the genomic knowledge of methylotrophy within this diverse group of bacteria.


July 7, 2019  |  

Complete genome sequencing of protease-producing novel Arthrobacter sp. strain IHBB 11108 using PacBio Single-Molecule Real-Time Sequencing technology.

A previously uncharacterized species of the genus Arthrobacter, strain IHBB 11108 (MCC 2780), is a Gram-positive, strictly aerobic, nonmotile, cold-adapted, and protease-producing alkaliphilic actinobacterium, isolated from shallow undersurface water from Chandra Tal Lake, Lahaul-Spiti, India. The complete genome of the strain is 3.6 Mb in size with an average 58.97% G+C content.


July 7, 2019  |  

High-quality draft genome sequence of actinobacterium Kibdelosporangium sp. MJ126-NF4, producer of type II polyketide azicemicins, using Illumina and PacBio Technologies.

Here, we report the high-quality draft genome sequence of actinobacterium Kibdelosporangium sp. MJ126-NF4, producer of the type II polyketide azicemicins, obtained using Illumina and PacBio sequencing technologies. The 11.75-Mbp genome contains >11,000 genes and 22 polyketide and nonribosomal peptide natural product gene clusters. Copyright © 2015 Ogasawara et al.


July 7, 2019  |  

Draft genome sequence of Streptacidiphilus oryzae TH49T, an acidophilic actinobacterium isolated from soil.

The draft genome sequence of Streptacidiphilus oryzae strain TH49(T), an acidophilic actinobacterium, was obtained. The draft is composed of six scaffolds totaling 7.8 Mbp, and it contains 6,829 protein-coding genes and 91 RNA genes. Genes related to respiratory nitrate reduction, siderophore production, and biosynthesis of other secondary metabolites were identified. Copyright © 2015 Kim et al.


July 7, 2019  |  

Complete genome sequence of the cellulase-producing bacterium Clavibacter michiganensis PF008.

The Gram-positive Actinobacterium Clavibacter michiganensis strain PF008 produces a cellulase of biotechnological interest, which is used for degradation of cellulose, a major component of plant cell walls. Here we report the complete genome sequence of this bacterium for better understanding of cellulase production and its virulence mechanism. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Kocuria palustris MU14/1.

Presented here is the first completely assembled genome sequence of Kocuria palustris, an actinobacterial species with broad ecological distribution. The single, circular chromosome of K. palustris MU14/1 comprises 2,854,447 bp, has a G+C content of 70.5%, and contains a deduced gene set of 2,521 coding sequences. Copyright © 2015 Calcutt and Foecking.


July 7, 2019  |  

Luteipulveratus halotolerans sp. nov., a novel actinobacterium (Dermacoccaceae) from Sarawak, Malaysia.

The taxonomic position of an actinobacterium strain, C296001T, isolated from a soil sample collected in Sarawak, Malaysia, was established using a polyphasic approach. Phylogenetically, strain C296001T is closely associated with the genus Luteipulveratus that forms a distinct monophyletic clade with the only described species, L. mongoliensis NBRC 105296T. The 16S rRNA gene sequence similarity between strain C296001T and L. mongoliensis is 98.7%. DNA-DNA hybridization results showed that the relatedness of strain C296001T to L. mongoliensis was only 21.5%. The G+C content of strain C296001T DNA is 71.7 mol%. Using a PacBio RS II system whole genome sequences for strains C296001T and NBRC 105296T were obtained. The determined genome sizes of 4.5 Mbps and 5.4 Mbps are similar to those of other Dermacoccaceae. The cell-wall peptidoglycan containing lysine, alanine, aspartic acid, glutamic acid and serine represents the peptidoglycan type A4a L-Lys-L-Ser-D-Asp. The major menaquinones are MK-8(H4), MK-8, and MK-8(H2). Phosphatidylglycerol, phosphatidylinositol, diphosphatidylglycerol and phosphoglycolipid are the polar lipids, while the whole-cell sugars are glucose, fucose and lower amount of ribose and galactose. The major fatty acids are iso-C16:0, anteiso-C17:0, iso-C16:1 H, anteiso-C17:1 ?9c, iso-C18:0, and C17:0 10-methyl. Chemotaxonomic analyses showed that C296001T had typical characteristics of members of the genus Luteipulveratus, with the main differences occurring in phenotypic characteristics. Based on the phenotypic and chemotaxonomic evidence, it is proposed that strain C296001T be classified as a novel species in the genus Luteipulveratus, for which the name Luteipulveratus halotolerans sp. nov. is recommended. The type strain is C296001T (=ATCC TSD-4T =JCM 30660T).


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.