Menu
June 1, 2021  |  

Highly sensitive and cost-effective detection of somatic cancer variants using single-molecule, real-time sequencing

Next-Generation Sequencing (NGS) technologies allow for molecular profiling of cancer samples with high sensitivity and speed at reduced cost. For efficient profiling of cancer samples, it is important that the NGS methods used are not only robust, but capable of accurately detecting low-frequency somatic mutations. Single Molecule, Real-Time (SMRT) Sequencing offers several advantages, including the ability to sequence single molecules with very high accuracy (>QV40) using the circular consensus sequencing (CCS) approach. The availability of genetically defined, human genomic reference standards provides an industry standard for the development and quality control of molecular assays for studying cancer variants. Here we characterize SMRT Sequencing for the detection of low-frequency somatic variants using the Quantitative Multiplex DNA Reference Standards from Horizon Discovery, combined with amplification of the variants using the Multiplicom Tumor Hotspot MASTR Plus assay. First, we sequenced a reference standard containing precise allelic frequencies from 1% to 24.5% for major oncology targets verified using digital PCR. This reference material recapitulates the complexity of tumor composition and serves as a well-characterized control. The control sample was amplified using the Multiplicom Tumor Hotspot MASTR Plus assay that targets 252 amplicons (121-254 bp) from 26 relevant cancer genes, which includes all 11 variants in the control sample. Next, we sequenced control samples prepared by SeraCare Life Sciences, which contained a defined mutation at allelic frequencies from 10% down to 0.1%. The wild type and mutant amplicons were serially diluted, sequenced and analyzed using SMRT Sequencing to identify the variants and determine the observed frequency. The random error profile and high-accuracy CCS reads make it possible to accurately detect low-frequency somatic variants.


June 1, 2021  |  

Minimization of chimera formation and substitution errors in full-length 16S PCR amplification

The constituents and intra-communal interactions of microbial populations have garnered increasing interest in areas such as water remediation, agriculture and human health. Amplification and sequencing of the evolutionarily conserved 16S rRNA gene is an efficient method of profiling communities. Currently, most targeted amplification focuses on short, hypervariable regions of the 16S sequence. Distinguishing information not spanned by the targeted region is lost, and species-level classification is often not possible. PacBio SMRT Sequencing easily spans the entire 1.5 kb 16S gene in a single read, producing highly accurate single-molecule sequences that can improve the identification of individual species in a metapopulation.However, this process still relies upon PCR amplification from a mixture of similar sequences, which may result in chimeras, or recombinant molecules, at rates upwards of 20%. These PCR artifacts make it difficult to identify novel species, and reduce the amount of informative sequences. We investigated multiple factors that may contribute to chimera formation, such as template damage, denaturation time before and during thermocycling, polymerase extension time, and reaction volume. We found two related factors that contribute to chimera formation: the amount of input template into the PCR reaction, and the number of PCR cycles.A second problem that can confound analysis is sequence errors generated during amplification and sequencing. With the updated algorithm for circular consensus sequencing (CCS2), single-molecule reads can be filtered to 99.99% predicted accuracy. Substitution errors in these highly filtered reads may be dominated by mis-incorporations during amplification. Sequence differences in full-length 16S amplicons from several commercial high-fidelity PCR kits were compared.We show results of our experiments and describe our optimized protocol for full-length 16S amplification for SMRT Sequencing. These optimizations have broader implications for other applications that use PCR amplification to phase variations across targeted regions and generate highly accurate reference sequences.


June 1, 2021  |  

An improved circular consensus algorithm with an application to detect HIV-1 Drug Resistance Associated Mutations (DRAMs)

Scientists who require confident resolution of heterogeneous populations across complex regions have been unable to transition to short-read sequencing methods. They continue to depend on Sanger sequencing despite its cost and time inefficiencies. Here we present a new redesigned algorithm that allows the generation of circular consensus sequences (CCS) from individual SMRT Sequencing reads. With this new algorithm, dubbed CCS2, it is possible to reach high quality across longer insert lengths at a lower cost and higher throughput than Sanger sequencing. We applied CCS2 to the characterization of the HIV-1 K103N drug-resistance associated mutation in both clonal and patient samples. This particular DRAM has previously proved to be clinically relevant, but challenging to characterize due to regional sequence context. First, a mutation was introduced into the 3rd position of amino acid position 103 (A>C substitution) of the RT gene on a pNL4-3 backbone by site-directed mutagenesis. Regions spanning ~1.3 kb were PCR amplified from both the non-mutated and mutant (K103N) plasmids, and were sequenced individually and as a 50:50 mixture. Additionally, the proviral reservoir of a subject with known dates of virologic failure of an Efavirenz-based regimen and with documented emergence of drug resistant (K103N) viremia was sequenced at several time points as a proof-of-concept study to determine the kinetics of retention and decay of K103N.Sequencing data were analyzed using the new CCS2 algorithm, which uses a fully-generative probabilistic model of our SMRT Sequencing process to polish consensus sequences to high accuracy. With CCS2, we are able to achieve a per-read empirical quality of QV30 (99.9% accuracy) at 19X coverage. A total of ~5000 1.3 kb consensus sequences with a collective empirical quality of ~QV40 (99.99%) were obtained for each sample. We demonstrate a 0% miscall rate in both unmixed control samples, and estimate a 48:52 frequency for the K103N mutation in the mixed (50:50) plasmid sample, consistent with data produced by orthogonal platforms. Additionally, the K103N escape variant was only detected in proviral samples from time points subsequent (19%) to the emergence of drug resistant viremia. This tool might be used to monitor the HIV reservoir for stable evolutionary changes throughout infection.


June 1, 2021  |  

Workflow for processing high-throughput, Single Molecule, Real-Time Sequencing data for analyzing the microbiome of patients undergoing fecal microbiota transplantation

There are many sequencing-based approaches to understanding complex metagenomic communities spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR. Whole-sample shotgun experiments generally use short-read sequencing, which results in data processing difficulties. For example, reads less than 500 bp in length will rarely cover a complete gene or region of interest, and will require assembly. This not only introduces the possibility of incorrectly combining sequence from different community members, it requires a high depth of coverage. As such, rare community members may not be represented in the resulting assembly. Circular-consensus, Single Molecule, Real-Time (SMRT) Sequencing reads in the 1-3 kb range, with >99% accuracy can be generated using the previous generation PacBio RS II or, in much higher throughput, using the new Sequel System. While throughput is lower compared to short-read sequencing methods, the reads are a true random sampling of the underlying community since SMRT Sequencing has been shown to have very low sequence-context bias. With single-molecule reads >1 kb at >99% consensus accuracy, it is reasonable to expect a high percentage of reads to include genes or gene fragments useful for analysis without the need for de novo assembly. Here we present the results of circular consensus sequencing for an individual’s microbiome, before and after undergoing fecal microbiota transplantation (FMT) in order to treat a chronic Clostridium difficile infection. We show that even with relatively low sequencing depth, the long-read, assembly-free, random sampling allows us to profile low abundance community members at the species level. We also show that using shotgun sampling with long reads allows a level of functional insight not possible with classic targeted 16S, or short read sequencing, due to entire genes being covered in single reads.


June 1, 2021  |  

Multiplexing strategies for microbial whole genome SMRT Sequencing

As the throughput of the PacBio Systems continues to increase, so has the desire to fully utilize SMRT Cell sequencing capacity to multiplex microbes for whole genome sequencing. Multiplexing is readily achieved by incorporating a unique barcode for each microbe into the SMRTbell adapters and using a streamlined library preparation process. Incorporating barcodes without PCR amplification prevents the loss of epigenetic information and the generation of chimeric sequences, while eliminating the need to generate separate SMRTbell libraries. We multiplexed the genomes of up to 8 unique strains of H. pylori. Each genome was sheared and processed through adapter ligation in a single, addition-only reaction. The barcoded samples were pooled in equimolar quantities and a single SMRTbell library was prepared. We demonstrate successful de novo microbial assembly from all multiplexes tested (2- through 8-plex) using data generated from a single SMRTbell library, run on a single SMRT Cell with the PacBio RS II, and analyzed with standard SMRT Analysis assembly methods. This strategy was successful using both small (1.6 Mb, H. pylori) and medium (5 Mb, E. coli) genomes. This protocol facilitates the sequencing of multiple microbial genomes in a single run, greatly increasing throughput and reducing costs per genome.


June 1, 2021  |  

WGS SMRT Sequencing of patient samples from a fecal microbiota transplant trial

Fecal samples were obtained from human subjects in the first blinded, placebo-controlled trial to evaluate the efficacy and safety of fecal microbiota transplant (FMT) for treatment of recurrent C. difficile infection. Samples included pre-and post-FMT transplant, post-placebo transplant, and the donor control; samples were taken at 2 and 8 week post-FMT. Sequencing was done on the PacBio Sequel System, with the goal of obtaining high quality sequences covering whole genes or gene clusters, which will be used to better understand the relationship between the composition and functional capabilities of intestinal microbiomes and patient health. Methods: Samples were randomly sheared to 2-3 kb fragments, a sufficient length to cover most genes, and SMRTbell libraries were prepared using standard protocols. Libraries were run on the Sequel System, which has a throughput of hundreds of thousands of reads per SMRT Cell, adequate yield to sample the complex microbiomes of post-transplant and donor samples.Results: Here we characterize samples, describe library prep methods and detail Sequel System operation, including run conditions. Descriptive statistics of data output (primary analysis) are presented, along with SMRT Analysis reports on circular consensus sequence (CCS) reads generated using an updated algorithm (CCS2). Final sequencing yields are filtered at various levels of predicted accuracy from 90% to 99.9%. Previous studies done using the PacBio RS II System demonstrated the ability to profile at the species level, and in some cases the strain level, and provided functional insight. Conclusions: These results demonstrate that the Sequel System is well-suited for characterization of complex microbial communities, with the ability for high-throughput generation of extremely accurate single-molecule sequences, each several kilobases in length. The entire process from shearing and library prep through sequencing and CCS analysis can be completed in less than 48 hours.


June 1, 2021  |  

“SMRTer Confirmation”: Scalable clinical read-through variant confirmation using the Pacific Biosciences SMRT Sequencing platform

Next-generation sequencing (NGS) has significantly improved the cost and turnaround time for diagnostic genetic tests. ACMG recommends variant confirmation by an orthogonal method, unless sufficiently high sensitivity and specificity can be demonstrated using NGS alone. Most NGS laboratories make extensive use of Sanger sequencing for secondary confirmation of single nucleotide variants (SNVs) and indels, representing a large fraction of the cost and time required to deliver high quality genetic testing data to clinicians and patients. Despite its established data quality, Sanger is not a high-throughput method by today’s standards from either an assay or analysis standpoint as it can involve manual review of Sanger traces and is not amenable to multiplexing. Toward a scalable solution for confirmation, Invitae has developed a fully automated and LIMS-tracked assay and informatics pipeline that utilizes the Pacific Biosciences SMRT sequencing platform. Invitae’s pipeline generates PCR amplicons that encompass the variant(s) of interest, which are converted to closed DNA structures (SMRTbells) and sequenced in pools of 96 per SMRTcell. Each amplicon is appended with a 16nt barcode that encodes the patient and variant IDs. Per-sample de-multiplexing, alignment, variant calling, and confirmation resolution are handled via an automated pipeline. The confirmation process was validated by analyzing 243 clinical SNVs and indels in parallel with the gold standard Sanger sequencing method. Amplicons were sequenced and analyzed in technical replicates to demonstrate reproducibility. In this study, the PacBio-based confirmation pipeline demonstrated high reproducibility (97.5%), and outperformed Sanger in the fraction of primary NGS variants confirmed (PacBio = 93.4% and 94.7% confirmed across two replicates, Sanger = 84.8%) while having 100% concordance of confirmation status among overlapping confirmation calls.


June 1, 2021  |  

Profiling complex population genomes with highly accurate single molecule reads: cow rumen microbiomes

Determining compositions and functional capabilities of complex populations is often challenging, especially for sequencing technologies with short reads that do not uniquely identify organisms or genes. Long-read sequencing improves the resolution of these mixed communities, but adoption for this application has been limited due to concerns about throughput, cost and accuracy. The recently introduced PacBio Sequel System generates hundreds of thousands of long and highly accurate single-molecule reads per SMRT Cell. We investigated how the Sequel System might increase understanding of metagenomic communities. In the past, focus was largely on taxonomic classification with 16S rRNA sequencing. Recent expansion to WGS sequencing enables functional profiling as well, with the ultimate goal of complete genome assemblies. Here we compare the complex microbiomes in 5 cow rumen samples, for which Illumina WGS sequence data was also available. To maximize the PacBio single-molecule sequence accuracy, libraries of 2 to 3 kb were generated, allowing many polymerase passes per molecule. The resulting reads were filtered at predicted single-molecule accuracy levels up to 99.99%. Community compositions of the 5 samples were compared with Illumina WGS assemblies from the same set of samples, indicating rare organisms were often missed with Illumina. Assembly from PacBio CCS reads yielded a contig >100 kb in length with 6-fold coverage. Mapping of Illumina reads to the 101 kb contig verified the PacBio assembly and contig sequence. These results illustrate ways in which long accurate reads benefit analysis of complex communities.


June 1, 2021  |  

Structural variant detection with low-coverage PacBio sequencing

Structural variants (genomic differences =50 base pairs) contribute to the evolution of organisms traits and human disease. Most structural variants (SVs) are too small to detect with array comparative genomic hybridization but too large to reliably discover with short-read DNA sequencing. Recent studies in human genomes show that PacBio SMRT Sequencing sensitively detects structural variants.


June 1, 2021  |  

Targeted sequencing using a long-read sequencing technology

Targeted sequencing employing PCR amplification is a fundamental approach to studying human genetic disease. PacBio’s Sequel System and supporting products provide an end-to-end solution for amplicon sequencing, offering better performance to Sanger technology in accuracy, read length, throughput, and breadth of informative data. Sample multiplexing is supported with three barcoding options providing the flexibility to incorporate unique sample identifiers during target amplification or library preparation. Multiplexing is key to realizing the full capacity of the 1 million individual reactions per Sequel SMRT Cell. Two analysis workflows that can generate high-accuracy results support a wide range of amplicon sizes in two ranges from 250 bp to 3 kb and from 3 kb to >10 kb. The Circular Consensus Sequencing workflow results in high accuracy through intra-molecular consensus generation, while high accuracy for the Long Amplicon Analysis workflow is achieved by clustering of individual long reads from multiple reactions. Here we present workflows and results for single- molecule sequencing of amplicons for human genetic analysis.


June 1, 2021  |  

High-throughput SMRT Sequencing of clinically relevant targets

Targeted sequencing with Sanger as well as short read based high throughput sequencing methods is standard practice in clinical genetic testing. However, many applications beyond SNP detection have remained somewhat obstructed due to technological challenges. With the advent of long reads and high consensus accuracy, SMRT Sequencing overcomes many of the technical hurdles faced by Sanger and NGS approaches, opening a broad range of untapped clinical sequencing opportunities. Flexible multiplexing options, highly adaptable sample preparation method and newly improved two well-developed analysis methods that generate highly-accurate sequencing results, make SMRT Sequencing an adept method for clinical grade targeted sequencing. The Circular Consensus Sequencing (CCS) analysis pipeline produces QV 30 data from each single intra-molecular multi-pass polymerase read, making it a reliable solution for detecting minor variant alleles with frequencies as low as 1 %. Long Amplicon Analysis (LAA) makes use of insert spanning full-length subreads originating from multiple individual copies of the target to generate highly accurate and phased consensus sequences (>QV50), offering a unique advantage for imputation free allele segregation and haplotype phasing. Here we present workflows and results for a range of SMRT Sequencing clinical applications. Specifically, we illustrate how the flexible multiplexing options, simple sample preparation methods and new developments in data analysis tools offered by PacBio in support of Sequel System 5.1 can come together in a variety of experimental designs to enable applications as diverse as high throughput HLA typing, mitochondrial DNA sequencing and viral vector integrity profiling of recombinant adeno-associated viral genomes (rAAV).


June 1, 2021  |  

A simple segue from Sanger to high-throughput SMRT Sequencing with a M13 barcoding system

High-throughput NGS methods are increasingly utilized in the clinical genomics market. However, short-read sequencing data continues to remain challenged by mapping inaccuracies in low complexity regions or regions of high homology and may not provide adequate coverage within GC-rich regions of the genome. Thus, the use of Sanger sequencing remains popular in many clinical sequencing labs as the gold standard approach for orthogonal validation of variants and to interrogate missed regions poorly covered by second-generation sequencing. The use of Sanger sequencing can be less than ideal, as it can be costly for high volume assays and projects. Additionally, Sanger sequencing generates read lengths shorter than the region of interest, which limits its ability to accurately phase allelic variants. High-throughput SMRT Sequencing overcomes the challenges of both the first- and second-generation sequencing methods. PacBio’s long read capability allows sequencing of full-length amplicons


June 1, 2021  |  

Single molecule high-fidelity (HiFi) Sequencing with >10 kb libraries

Recent improvements in sequencing chemistry and instrument performance combine to create a new PacBio data type, Single Molecule High-Fidelity reads (HiFi reads). Increased read length and improvement in library construction enables average read lengths of 10-20 kb with average sequence identity greater than 99% from raw single molecule reads. The resulting reads have the accuracy comparable to short read NGS but with 50-100 times longer read length. Here we benchmark the performance of this data type by sequencing and genotyping the Genome in a Bottle (GIAB) HG0002 human reference sample from the National Institute of Standards and Technology (NIST). We further demonstrate the general utility of HiFi reads by analyzing multiple clones of Cabernet Sauvignon. Three different clones were sequenced and de novo assembled with the CANU assembly algorithm, generating draft assemblies of very high contiguity equal to or better than earlier assembly efforts using PacBio long reads. Using the Cabernet Sauvignon Clone 8 assembly as a reference, we mapped the HiFi reads generated from Clone 6 and Clone 47 to identify single nucleotide polymorphisms (SNPs) and structural variants (SVs) that are specific to each of the three samples.


June 1, 2021  |  

High-quality human genomes achieved through HiFi sequence data and FALCON-Unzip assembly

De novo assemblies of human genomes from accurate (85-90%), continuous long reads (CLR) now approach the human reference genome in contiguity, but the assembly base pair accuracy is typically below QV40 (99.99%), an order-of-magnitude lower than the standard for finished references. The base pair errors complicate downstream interpretation, particularly false positive indels that lead to false gene loss through frameshifts. PacBio HiFi sequence data, which are both long (>10 kb) and very accurate (>99.9%) at the individual sequence read level, enable a new paradigm in human genome assembly. Haploid human assemblies using HiFi data achieve similar contiguity to those using CLR data and are highly accurate at the base level1. Furthermore, HiFi assemblies resolve more high-identity sequences such as segmental duplications2. To enable HiFi assembly in diploid human samples, we have extended the FALCON-Unzip assembler to work directly with HiFi reads. Here we present phased human diploid genome assemblies from HiFi sequencing of HG002, HG005, and the Vertebrate Genome Project (VGP) mHomSap1 trio on the PacBio Sequel II System. The HiFi assemblies all exceed the VGP’s quality guidelines, approaching QV50 (99.999%) accuracy. For HG002, 60% of the genome was haplotype-resolved, with phase-block N50 of 143Kbp and phasing accuracy of 99.6%. The overall mean base accuracy of the assembly was QV49.7. In conclusion, HiFi data show great promise towards complete, contiguous, and accurate diploid human assemblies.


June 1, 2021  |  

Detection and phasing of small variants in Genome in a Bottle samples with highly accurate long reads

Introduction: Long-read PacBio SMRT Sequencing has been applied successfully to assemble genomes and detect structural variants. However, due to high raw read error rates of 10-15%, it has remained difficult to call small variants from long reads. Recent improvements in library preparation, sequencing chemistry, and instrument yield have increased length, accuracy, and throughput of PacBio Circular Consensus (CCS) reads, resulting in 10-20 kb “HiFi” reads with mean read quality above 99%. Materials and Methods: We sequenced 11 kb size-selected libraries from the Genome in a Bottle (GIAB) human reference samples HG001, HG002, and HG005 to approximately 30-fold coverage on the Sequel II System with six SMRT Cells 8M each. The CCS algorithm was used to generate highly accurate (average 99.8%) reads of mean length 10-11 kb, which were then mapped to the hs37d5 reference with pbmm2. We detected small variants using Google DeepVariant and compared these variant calls to GIAB benchmarks. Small variants were then phased with WhatsHap. Results: With these long, highly accurate CCS reads, DeepVariant achieves high SNP and Indel accuracy against the GIAB benchmark truth set for all three reference samples. Using WhatsHap, small variants were phased into haplotype blocks with N50 from 82 to 146 kb. The improved mappability of long reads allows detection of variants in many medically relevant genes such as CYP2D6and PMS2that have proven ‘difficult-to-map’ with short reads. We show that small variant precision and recall remain high down to 15-fold coverage. Conclusions: These highly accurate long reads combine the mappability of noisy long reads with the accuracy and small variant detection utility of short reads, which will allow the detection and phasing of variants in regions that have proven recalcitrant to short read sequencing and variant detection.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.