June 1, 2021  |  

A novel analytical pipeline for de novo haplotype phasing and amplicon analysis using SMRT Sequencing technology.

While the identification of individual SNPs has been readily available for some time, the ability to accurately phase SNPs and structural variation across a haplotype has been a challenge. With individual reads of an average length of 9 kb (P5-C3), and individual reads beyond 30 kb in length, SMRT Sequencing technology allows the identification of mutation combinations such as microdeletions, insertions, and substitutions without any predetermined reference sequence. Long- amplicon analysis is a novel protocol that identifies and reports the abundance of differing clusters of sequencing reads within a single library. Graphs generated via hierarchical clustering of individual sequencing reads are used to generate Markov models representing the consensus sequence of individual clusters found to be significantly different. Long-amplicon analysis is capable of differentiating between underlying sequences that are 99.9% similar, which is suitable for haplotyping and differentiating pseudogenes from coding transcripts. This protocol allows for the identification of structural variation in the MUC5AC gene sequence, despite the presence of a gap in the current genome assembly, and can also be used for HLA haplotyping. Clustering can also been applied to identify full length transcripts for the purpose of estimating consensus sequences and enumerating isoform types. Long-amplicon analysis allows for the elucidation of complex regions otherwise missed by other sequencing technologies, which may contribute to the diagnosis and understanding of otherwise complex diseases.

June 1, 2021  |  

SMRT Sequencing solutions for large genomes and transcriptomes.

Single Molecule, Real-Time (SMRT) Sequencing holds promise for addressing new frontiers in large genome complexities, such as long, highly repetitive, low-complexity regions and duplication events, and differentiating between transcript isoforms that are difficult to resolve with short-read technologies. We present solutions available for both reference genome improvement (>100 MB) and transcriptome research to best leverage long reads that have exceeded 20 Kb in length. Benefits for these applications are further realized with consistent use of size-selection of input sample using the BluePippin™ device from Sage Science. Highlights from our genome assembly projects using the latest P5-C3 chemistry on model organisms will be shared. Assembly contig N50 have exceeded 6 Mb and we observed longest contig exceeding 12.5 Mb with an average base quality of QV50. Additionally, the value of long, intact reads to provide a no-assembly approach to investigate transcript isoforms using our Iso-Seq Application will be presented.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.