July 7, 2019  |  

Assessment of insertion sequence mobilization as an adaptive response to oxidative stress in Acinetobacter baumannii using IS-Seq.

Insertion sequence (IS) elements are found throughout bacterial genomes and contribute to genome variation by interrupting genes or altering gene expression. Few of the more than thirty IS elements described in Acinetobacter baumannii have been characterized for transposition activity or expression effects. A targeted sequencing method, IS-seq, was developed to efficiently map the locations of new insertion events in A. baumannii genomes and was used to identify novel IS sites following growth in the presence of hydrogen peroxide, which causes oxidative stress. Serial subculture in the presence of sub-inhibitory concentrations of hydrogen peroxide led to rapid selection of cells carrying an ISAba1 element upstream of the catalase/peroxidase gene katG Several additional sites for the elements ISAba1, ISAba13, ISAba25, ISAba26, and ISAba125 were found at low abundance after serial subculture, indicating that each element is active and contributes to genetic variation that may be subject to selection. Following hydrogen peroxide exposure, rapid changes in gene expression were observed in genes related to iron homeostasis. The IS insertions adjacent to katG resulted in more than 20-fold overexpression of the gene and increased hydrogen peroxide tolerance.Importance Insertion sequences (IS) are contribute to genomic and phenotypic variation in many bacterial species, but little is known about how transposition rates vary among elements or how selective pressure influences this process. A new method, termed “IS-seq” for identifying new insertion locations that arise under experimental growth conditions in the genome was developed and tested with cells grown in the presence of hydrogen peroxide, which causes oxidative stress. Gene expression changes in response to hydrogen peroxide exposure are similar to those observed in other species and include genes that control free iron concentrations. New IS insertions adjacent to a gene encoding a catalase enzyme confirm that IS elements can rapidly contribute to adaptive variation in the presence of selection. Copyright © 2017 Wright et al.


July 7, 2019  |  

Genomic sequencing of a strain of Acinetobacter baumannii and potential mechanisms to antibiotics resistance.

Acinetobacter baumannii has been becoming a great challenge to clinicians due to their resistance to almost all available antibiotics. In this study, we sequenced the genome from a multiple antibiotics resistant Acinetobacter baumannii stain which was named A. baumannii-1isolated from China by SMRT sequencing technology to explore its potential mechanisms to antibiotic resistance. We found that several mechanisms might contribute to the antibiotic resistance of Acinetobacter baumannii. Specifically, we found that SNP in genes associated with nucleotide excision repair and ABC transporter might contribute to its resistance to multiple antibiotics; we also found that specific genes associated with bacterial DNA integration and recombination, DNA-mediated transposition and response to antibiotics might contribute to its resistance to multiple antibiotics; Furthermore, specific genes associated with penicillin and cephalosporin biosynthetic pathway and specific genes associated with CHDL and MBL ß-lactamase genes might contribute to its resistance to multiple antibiotics. Thus, the detailed mechanisms by which Acinetobacter baumannii show extensive resistance to multiple antibiotics are very complicated. Such a study might be helpful to develop new strategies to control Acinetobacter baumannii infection. Copyright © 2017 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Multi-omics approach to study global changes in a triclosan-resistant mutant strain of Acinetobacter baumannii ATCC 17978.

Acinetobacter baumannii AB042, a triclosan-resistant mutant strain, was examined for modulated gene expression using whole-genome sequencing, transcriptomics and proteomics in order to understand the mechanism of triclosan resistance as well as its impact on A. baumannii. Data revealed modulated expression of the fatty acid metabolism pathway, co-factors known to play a role in the synthesis of fatty acids, as well as several transcriptional regulators. The membrane composition of the mutant revealed a decrease in C18 with a corresponding increase in C16 fatty acids compared with the parent strain A. baumannii ATCC 17978. These data indicate that A. baumannii responds to triclosan by altering the expression of genes involved in fatty acid metabolism, antibiotic resistance and amino acid metabolism. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.


July 7, 2019  |  

Transcriptome Remodeling of Acinetobacter baumannii during Infection and Treatment.

Acinetobacter baumannii is an increasingly common multidrug-resistant pathogen in health care settings. Although the genetic basis of antibiotic resistance mechanisms has been extensively studied, much less is known about how genetic variation contributes to other aspects of successful infections. Genetic changes that occur during host infection and treatment have the potential to remodel gene expression patterns related to resistance and pathogenesis. Longitudinal sets of multidrug-resistant A. baumannii isolates from eight patients were analyzed by RNA sequencing (RNA-seq) to identify differentially expressed genes and link them to genetic changes contributing to transcriptional variation at both within-patient and population levels. The number of differentially expressed genes among isolates from the same patient ranged from 26 (patient 588) to 145 (patient 475). Multiple patients had isolates with differential gene expression patterns related to mutations in the pmrAB and adeRS two-component regulatory system genes, as well as significant differences in genes related to antibiotic resistance, iron acquisition, amino acid metabolism, and surface-associated proteins. Population level analysis revealed 39 genetic regions with clade-specific differentially expressed genes, for which 19, 8, and 3 of these could be explained by insertion sequence mobilization, recombination-driven sequence variation, and intergenic mutations, respectively. Multiple types of mutations that arise during infection can significantly remodel the expression of genes that are known to be important in pathogenesis. IMPORTANCE Health care-associated multidrug-resistant Acinetobacter baumannii can cause persistent infections in patients, but bacterial cells must overcome host defenses and antibiotic therapies to do so. Genetic variation arises during host infection, and new mutations are often enriched in genes encoding transcriptional regulators, iron acquisition systems, and surface-associated structures. In this study, genetic variation was shown to result in transcriptome remodeling at the level of individual patients and across phylogenetic groups. Differentially expressed genes include those related to capsule modification, iron acquisition, type I pili, and antibiotic resistance. Population level transcriptional variation reflects genome dynamics over longer evolutionary time periods, and convergent transcriptional changes support the adaptive significance of these regions. Transcriptional changes can be attributed to multiple types of genomic change, but insertion sequence mobilization had a predominant effect. The transcriptional effects of mutations that arise during infection highlight the rapid adaptation of A. baumannii during host exposure. Copyright © 2017 Wright et al.


July 7, 2019  |  

Genomic epidemiology of NDM-1-encoding plasmids in Latin American clinical isolates reveals insights into the evolution of multidrug resistance

Bacteria that produce the broad-spectrum Carbapenem antibiotic New Delhi Metallo-ß-lactamase (NDM) place a burden on health care systems worldwide, due to the limited treatment options for infections caused by them and the rapid global spread of this antibiotic resistance mechanism. Although it is believed that the associated resistance gene blaNDM-1 originated in Acinetobacter spp., the role of Enterobacteriaceae in its dissemination remains unclear. In this study, we used whole genome sequencing to investigate the dissemination dynamics of blaNDM-1-positive plasmids in a set of 21 clinical NDM-1-positive isolates from Colombia and Mexico (Providencia rettgeri, Klebsiella pneumoniae, and Acinetobacter baumannii) as well as six representative NDM-1-positive Escherichia coli transconjugants. Additionally, the plasmids from three representative P. rettgeri isolates were sequenced by PacBio sequencing and finished. Our results demonstrate the presence of previously reported plasmids from K. pneumoniae and A. baumannii in different genetic backgrounds and geographically distant locations in Colombia. Three new previously unclassified plasmids were also identified in P. rettgeri from Colombia and Mexico, plus an interesting genetic link between NDM-1-positive P. rettgeri from distant geographic locations (Canada, Mexico, Colombia, and Israel) without any reported epidemiological links was discovered. Finally, we detected a relationship between plasmids present in P. rettgeri and plasmids from A. baumannii and K. pneumoniae. Overall, our findings suggest a Russian doll model for the dissemination of blaNDM-1 in Latin America, with P. rettgeri playing a central role in this process, and reveal new insights into the evolution and dissemination of plasmids carrying such antibiotic resistance genes.© The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

A nosocomial outbreak of extensively drug resistant (XDR) Acinetobacter baumannii isolates containing blaOXA-237 encoded on a plasmid.

Carbapenem antibiotics are among the mainstay for treating infections caused by Acinetobacter baumannii, especially in the Northwest United States where carbapenem resistant A. baumannii remain relatively rare. However, between June 2012 and October 2014, an outbreak of carbapenem-resistant A. baumannii occurred in 16 patients from 5 healthcare facilities in the state of Oregon. All isolates were defined as extensively-drug resistant (XDR). MLST revealed that the isolates belonged to sequence type 2 (international clone 2, IC2), and were greater than 95% similar by rep-PCR analysis. Multiplex PCR revealed the presence of a blaOXA carbapenemase gene, later identified as blaOXA-237 Whole genome sequencing of all isolates revealed a well-supported separate branch within a global A. baumannii phylogeny. Pacific Biosciences (PacBio) SMRT sequencing was also performed on one isolate to gain insight into the genetic location of the carbapenem resistance gene. We discovered that blaOXA-237, flanked on either side by ISAba1 elements in opposite orientations, was carried by a 15,198 bp plasmid designated pORAB01-3, and was present in all 16 isolates. The plasmid also contained genes encoding for: a TonB-dependent receptor, septicolysin, a type IV secretory system conjugative DNA transfer family protein, an integrase, a RepB family plasmid DNA replication initiator protein, an a/ß hydrolase, and a BrnT/BrnA type II toxin-antitoxin system. This is the first reported outbreak associated with this specific carbapenemase. Particularly worrisome is that blaOXA-237 was plasmid encoded and found in the most prominent worldwide clonal group IC2, potentially giving pORAB01-3 great capacity for future widespread dissemination. Copyright © 2017 American Society for Microbiology.


July 7, 2019  |  

Complete genome sequence of Acinetobacter baumannii A1296 (ST1469) with a small plasmid harbouring the tet(39) tetracycline resistance gene.

Acinetobacter baumannii is considered an important nosocomial pathogen worldwide owing to its increasing antibiotic resistance. This study aimed to determine the complete genome sequence of A. baumannii strain A1296 and to perform a comparative analysis among A. baumannii.The complete genome sequence of A. baumannii A1296 was sequenced on two SMRT cells using P6C4 chemistry on a PacBio Single Molecule, Real-Time (SMRT) RS II instrument. The A1296 genome sequence was annotated using Prokaryotic Genome Automatic Annotation Pipeline (PGAAP), and the sequence type and resistance genes of the strain were analysed.Here we present the complete genome sequence of A. baumannii strain A1296, belonging to a novel sequence type (ST1469) and isolated from patient in China, that was sensitive to multiple antibiotics. The genome of A. baumannii A1296 was 3810701bp in length, including one circular chromosome and two plasmids. The tet(39) resistance gene was located on the small plasmid in this A. baumannii strain.The genome sequence of A. baumannii strain A1296 can be used as a reference sequence for comparative analysis aimed at elucidating the acquisition, dissemination and mobilisation of resistance genes among A. baumannii. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.


July 7, 2019  |  

Rapid gene turnover as a significant source of genetic variation in a recently seeded population of a pathogen.

Genome sequencing has been useful to gain an understanding of bacterial evolution. It has been used for studying the phylogeography and/or the impact of mutation and recombination on bacterial populations. However, it has rarely been used to study gene turnover at microevolutionary scales. Here, we sequenced Mexican strains of the human pathogen Acinetobacter baumannii sampled from the same locale over a 3 year period to obtain insights into the microevolutionary dynamics of gene content variability. We found that the Mexican A. baumannii population was recently founded and has been emerging due to a rapid clonal expansion. Furthermore, we noticed that on average the Mexican strains differed from each other by over 300 genes and, notably, this gene content variation has accrued more frequently and faster than the accumulation of mutations. Moreover, due to its rapid pace, gene content variation reflects the phylogeny only at very short periods of time. Additionally, we found that the external branches of the phylogeny had almost 100 more genes than the internal branches. All in all, these results show that rapid gene turnover has been of paramount importance in producing genetic variation within this population and demonstrate the utility of genome sequencing to study alternative forms of genetic variation.


July 7, 2019  |  

Multiplication of blaOXA-23 is common in clinical Acinetobacter baumannii, but does not enhance carbapenem resistance.

To investigate the copy number of blaOXA-23 and its correlation with carbapenem resistance in carbapenem-resistant Acinetobacter baumannii (CRAB).A total of 113 blaOXA-23-positive clinical CRAB isolates were collected from two hospitals in Zhejiang province, China. Their genetic relatedness was determined by MLST. The MIC of imipenem was determined using the agar diffusion method and the copy number of blaOXA-23 was measured using quantitative real-time PCR (qRT-PCR). The complete genomes of five clinical CRAB strains were sequenced using PacBio technology to investigate the multiplication mechanism of blaOXA-23.Most of the isolates (100/113) belonged to global clone II and the MIC of imipenem ranged from 16 to 96 mg/L. The gene blaOXA-23 resided exclusively in Tn2006 or Tn2009. Approximately 38% of the isolates carried two or more copies of blaOXA-23. The copy number of blaOXA-23 was not correlated with the MIC of imipenem. Within the five sequenced strains, multiple copies of blaOXA-23 were either tandemly clustered or independently inserted at different genomic sites.Multiplication of blaOXA-23 is common in CRAB, but does not enhance carbapenem resistance. Multiplication can be present in the form of either tandem amplifications or independent insertions at different sites.© The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.