Background: Microbial ecology is reshaping our understanding of the natural world by revealing the large phylogenetic and functional diversity of microbial life. However the vast majority of these microorganisms remain poorly understood, as most cultivated representatives belong to just four phylogenetic groups and more than half of all identified phyla remain uncultivated. Characterization of this microbial ‘dark matter’ will thus greatly benefit from new metagenomic methods for in situ analysis. For example, sensitive high throughput methods for the characterization of community composition and structure from the sequencing of conserved marker genes. Methods: Here we utilize Single Molecule Real-Time (SMRT) sequencing…
The assembly of metagenomes is dramatically improved by the long read lengths of SMRT Sequencing. This is demonstrated in an experimental design to sequence a mock community from the Human Microbiome Project, and assemble the data using the hierarchical genome assembly process (HGAP) at Pacific Biosciences. Results of this analysis are promising, and display much improved contiguity in the assembly of the mock community as compared to publicly available short-read data sets and assemblies. Additionally, the use of base modification information to make further associations between contigs provides additional data to improve assemblies, and to distinguish between members within a…
There are many sequencing-based approaches to understanding complex metagenomic communities spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR amplification. Whole-sample shotgun experiments generally use short-read, second-generation sequencing, which results in data processing difficulties. For example, reads less than 1 kb in length will likely not cover a complete gene or region of interest, and will require assembly. This not only introduces the possibility of incorrectly combining sequence from different community members, it requires a high depth of coverage. As such, rare community members…
Microbial genome sequencing can be done quickly, easily, and efficiently with the PacBio sequencing instruments, resulting in complete de novo assemblies. Alternative protocols have been developed to reduce the amount of purified DNA required for SMRT Sequencing, to broaden applicability to lower-abundance samples. If 50-100 ng of microbial DNA is available, a 10-20 kb SMRTbell library can be made. A 2 kb SMRTbell library only requires a few ng of gDNA when carrier DNA is added to the library. The resulting libraries can be loaded onto multiple SMRT Cells, yielding more than enough data for complete assembly of microbial genomes…
High-throughput sequencing of the complete 16S rRNA gene has become a valuable tool for characterizing microbial communities. However, the short reads produced by second-generation sequencing cannot provide taxonomic classification below the genus level. In this study, we demonstrate the capability of PacBio’s Single Molecule, Real-Time (SMRT) Sequencing to generate community profiles using mock microbial community samples from BEI Resources. We also evaluate multiplexing capabilities using PacBio barcodes on pooled samples comprising heterogeneous 16S amplicon populations representing soil, fecal, and mock communities.
There are many sequencing-based approaches to understanding complex metagenomic communities, spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR amplification. Whole-sample shotgun experiments require a high depth of coverage. As such, rare community members may not be represented in the resulting assembly. Circular-consensus, Single Molecule, Real-Time (SMRT) Sequencing reads in the 1-2 kb range, with >99% consensus accuracy, can be efficiently generated for low amounts of input DNA, e.g. as little as 10 ng of input DNA sequenced in 4 SMRT Cells can generate…
The constituents and intra-communal interactions of microbial populations have garnered increasing interest in areas such as water remediation, agriculture and human health. One popular, efficient method of profiling communities is to amplify and sequence the evolutionarily conserved 16S rRNA sequence. Currently, most targeted amplification focuses on short, hypervariable regions of the 16S sequence. Distinguishing information not spanned by the targeted region is lost and species-level classification is often not possible. SMRT Sequencing easily spans the entire 1.5 kb 16S gene, and in combination with highly-accurate single-molecule sequences, can improve the identification of individual species in a metapopulation. However, when amplifying…
The constituents and intra-communal interactions of microbial populations have garnered increasing interest in areas such as water remediation, agriculture and human health. Amplification and sequencing of the evolutionarily conserved 16S rRNA gene is an efficient method of profiling communities. Currently, most targeted amplification focuses on short, hypervariable regions of the 16S sequence. Distinguishing information not spanned by the targeted region is lost, and species-level classification is often not possible. PacBio SMRT Sequencing easily spans the entire 1.5 kb 16S gene in a single read, producing highly accurate single-molecule sequences that can improve the identification of individual species in a metapopulation.However,…
Determining compositions and functional capabilities of complex populations is often challenging, especially for sequencing technologies with short reads that do not uniquely identify organisms or genes. Long-read sequencing improves the resolution of these mixed communities, but adoption for this application has been limited due to concerns about throughput, cost and accuracy. The recently introduced PacBio Sequel System generates hundreds of thousands of long and highly accurate single-molecule reads per SMRT Cell. We investigated how the Sequel System might increase understanding of metagenomic communities. In the past, focus was largely on taxonomic classification with 16S rRNA sequencing. Recent expansion to WGS…
Determining compositions and functional capabilities of complex populations is often challenging, especially for sequencing technologies with short reads that do not uniquely identify organisms or genes. Long-read sequencing improves the resolution of these mixed communities, but adoption for this application has been limited due to concerns about throughput, cost and accuracy. The recently introduced PacBio Sequel System generates hundreds of thousands of long and highly accurate single-molecule reads per SMRT Cell. We investigated how the Sequel System might increase understanding of metagenomic communities. In the past, focus was largely on taxonomic classification with 16S rRNA sequencing. Recent expansion to WGS…
Highly accurate long reads – HiFi reads – with single-molecule resolution make Single Molecule, Real-Time (SMRT) Sequencing ideal for full-length 16S rRNA sequencing, shotgun metagenomic profiling, and metagenome assembly.
This tutorial provides an overview of the Circular Consensus Sequence (CCS) analysis application. The CCS algorithm is used in applications that require distinguishing closely related DNA molecules in the same sample. Applications of CCS include profiling microbial communities, resolving viral populations and accurately identifying somatic variations within heterogeneous tumor cells. This tutorial covers features of SMRT Link v5.0.0.