July 7, 2019  |  

Complete genome sequences of a clinical isolate and an environmental isolate of Vibrio parahaemolyticus.

Vibrio parahaemolyticus is the leading cause of seafood-borne infections in the United States. We report complete genome sequences for two V. parahaemolyticus strains isolated in 2007, CDC_K4557 and FDA_R31 of clinical and oyster origin, respectively. These two sequences might assist in the investigation of differential virulence of this organism. Copyright © 2015 Lüdeke et al.

July 7, 2019  |  

Automation of PacBio SMRTbell NGS library preparation for bacterial genome sequencing.

The PacBio RS II provides for single molecule, real-time DNA technology to sequence genomes and detect DNA modifications. The starting point for high-quality sequence production is high molecular weight genomic DNA. To automate the library preparation process, there must be high-throughput methods in place to assess the genomic DNA, to ensure the size and amounts of the sheared DNA fragments and final library.The library construction automation was accomplished using the Agilent NGS workstation with Bravo accessories for heating, shaking, cooling, and magnetic bead manipulations for template purification. The quality control methods from gDNA input to final library using the Agilent Bioanalyzer System and Agilent TapeStation System were evaluated.Automated protocols of PacBio 10 kb library preparation produced libraries with similar technical performance to those generated manually. The TapeStation System proved to be a reliable method that could be used in a 96-well plate format to QC the DNA equivalent to the standard Bioanalyzer System results. The DNA Integrity Number that is calculated in the TapeStation System software upon analysis of genomic DNA is quite helpful to assure that the starting genomic DNA is not degraded. In this respect, the gDNA assay on the TapeStation System is preferable to the DNA 12000 assay on the Bioanalyzer System, which cannot run genomic DNA, nor can the Bioanalyzer work directly from the 96-well plates.

July 7, 2019  |  

Salmonella degrades the host glycocalyx leading to altered infection and glycan remodeling.

Complex glycans cover the gut epithelial surface to protect the cell from the environment. Invasive pathogens must breach the glycan layer before initiating infection. While glycan degradation is crucial for infection, this process is inadequately understood. Salmonella contains 47 glycosyl hydrolases (GHs) that may degrade the glycan. We hypothesized that keystone genes from the entire GH complement of Salmonella are required to degrade glycans to change infection. This study determined that GHs recognize the terminal monosaccharides (N-acetylneuraminic acid (Neu5Ac), galactose, mannose, and fucose) and significantly (p?

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.