fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Thursday, March 31, 2016

With Greater Contiguity, New Gorilla Genome Assembly Offers Insights into Gene Content, SVs, and More

In a Science paper published today, scientists from the University of Washington, the McDonnell Genome Institute, and other organizations present a new gorilla genome assembly generated with PacBio long-read sequencing, representing an over 150-fold improvement over previous assemblies. From lead authors David Gordon, John Huddleston, Mark Chaisson, and Christopher Hill, and senior author Evan Eichler, the paper reports that the new assembly recovers nearly all reference exons missing from the previous assembly, and provides an unprecedented look at structural variation, genetic diversity, ancestral evolution, repeat structures, and more. The project was launched to address shortcomings with the existing gorilla assembly,…

Read More »

Wednesday, March 30, 2016

New Study Uses SMRT-ChIP Method to Find Novel Methylation in Mouse Embryonic Stem Cells

In a new Nature publication, scientists from Yale and other institutions report the discovery of N6-methyladenine (N6-mA) in mouse embryonic stem cells (ESCs), contrary to the conventional wisdom that the only form of methylation in mammals is 5-methylcytosine. Through the project, the team also developed a new method for pairing chromatin immunoprecipitation (ChIP) with SMRT Sequencing. Both of these developments have significant implications for the genomics community. “DNA methylation on N6-adenine in mammalian embryonic stem cells” comes from lead author Tao Wu and senior author Andrew Xiao, both at Yale School of Medicine. The team also included collaborators from the…

Read More »

Thursday, March 24, 2016

CSHL Scientists Discuss Long-Read Sequencing for More Contiguous Assemblies and Complex Genomes

Much like the “sharpen” tool in Photoshop brings a picture into tighter focus and enhances the fine detail, long-read sequencing offers enhanced resolution of genomic information, according to Cold Spring Harbor Laboratory colleagues Mike Schatz and Maria Nattestad. The scientists spoke with Mendelspod’s Theral Timpson about how long-read sequencing is advancing their research in unique and powerful ways; a brief recap of their conversation follows. Schatz uses PacBio sequencing to establish incredibly accurate assemblies of microbial, crop, animal, and human genomes. Indeed, SMRT technology has significantly improved his work on the flatworm Macrostomum lignano, an organism with regenerative powers. With…

Read More »

Tuesday, March 15, 2016

Genome Galaxy Initiative:
On a Mission to Sequence the Beautiful and Mysterious Kākāpō

Photo courtesy of Andrew Digby, DOC New Zealand New Zealand is more than an amazing vacation destination or the setting of the Lord of the Rings movies; it’s also home to a wealth of fascinating species that evolved in isolation for millions of years. The critically endangered kākāpō bird is one such species, and it needs your help now. David Iorns, a native New Zealander and founder of the Genetic Rescue Foundation, has launched a crowdfunding campaign to raise money and pursue a grand vision: saving kākāpōs from extinction.  With a high-quality genome already underway using SMRT Sequencing, Iorns wants…

Read More »

Thursday, March 3, 2016

Prevalent Methylation in Prokaryotic Genomes Suggests Regulatory Functions

A new publication from scientists at Lawrence Berkeley National Laboratory, the Joint Genome Institute, and other organizations reports a landmark study of genome-wide methylation in prokaryotes. The analyses of 230 bacteria and archaea species revealed both more methylation than expected and novel epigenetic mechanisms. “­­­The Epigenomic­­­ Landscape of Prokaryotes” from lead author Matthew Blow, senior author Richard Roberts, and collaborators was recently published in PLoS Genetics. The team used SMRT Sequencing to detect 6-methyladenosine (m6A), 4-methylcytosine (m4C), and 5-methylcytosine (5mC) across the 230 genomes. “Bisulfite sequencing has enabled genome-wide surveys of 5mC methylation, but a historic absence of tools for…

Read More »

Subscribe for blog updates:

Archives

Search

Categories

Press Release

PacBio Grants Equity Incentive Award to New Employee

Friday, December 3, 2021

Stay
Current

Visit our blog »