+

X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences’ rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, July 18, 2017

Novogene to Build Database of Structural Variants in 1,000 Chinese Genomes Using SMRT Sequencing

In an effort to improve precision medicine in Chinese populations, Novogene announced plans to build a database of structural variants in 1,000 Chinese individuals using PacBio SMRT Sequencing. Databases which catalog SNVs and small indels have proven invaluable for precision medicine, serving as population controls for rare disease research and providing a list of variants for genetic association studies. Yet, most of the base pairs that differ between two human genomes are in structural variants which are not adequately represented in current databases. Furthermore, current databases do not represent the genetic background of all ethnic populations, particularly the Chinese who…

Read More »

Thursday, June 22, 2017

Stanford Scientists Report First Use of PacBio Whole Genome Sequencing to Identify a Disease-Causing Mutation

An article published today in Genetics in Medicine from Jason Merker, Euan Ashley, and colleagues at Stanford University reports the first successful application of PacBio whole genome sequencing to identify a disease-causing mutation. (Check out Stanford's news release here.) The authors describe an individual who presented over 20 years with a series of benign tumors in his heart and glands. The individual satisfied the clinical criteria for Carney complex, but after eight years of genetic evaluation, including whole genome short-read sequencing, experts were still unable to pinpoint the underlying genetic mutation and confirm a diagnosis. Ultimately, the authors turned to the…

Read More »

Thursday, March 30, 2017

At AACR, Revealing Structural Variants and a New SMRT Grant Program

We’re excited to be heading to Washington, DC, for the annual meeting of the American Association for Cancer Research. The PacBio team always enjoys hearing about the latest in cancer translational research at AACR, along with thousands of leading scientists in the field. Many of those scientists have already learned that SMRT Sequencing provides a unique view into cancer, revealing structural variation, phasing distant variants, and delivering full-length isoform sequences. With uniform coverage, industry-leading consensus accuracy, and reads extending to tens of kilobases, PacBio long-read sequencing gives researchers the ability to monitor and make sense of even the most complex…

Read More »

Tuesday, August 2, 2016

SMRT Sequencing Accurately Detects Gene Copy Numbers in Complex Maize Genome

Scientists from Rutgers University and the University of California, Davis, used SMRT Sequencing to study structural variation in maize. They found that this approach delivered more complete information at lower cost than standard methods and generated new findings that could be important for crop breeding. From lead author Jiaqiang Dong, senior author Jo Messing, and collaborators, “Analysis of tandem gene copies in maize chromosomal regions reconstructed from long sequence reads” was published in PNAS recently. They chose to evaluate SMRT Sequencing for copy number detection as an alternative to short-read sequencing, which doesn’t span long repeats, and BAC cloning, which…

Read More »

Wednesday, April 13, 2016

Genome and Transcriptome Analysis Help Scientists Deconstruct Cancer Complexity

At Cold Spring Harbor Laboratory, scientists used SMRT® Sequencing to decode one of the most challenging cancer genomes ever encountered. Along the way, they built a portfolio of open-access analysis tools that will help researchers everywhere make structural variation discoveries with long-read sequencing data. When Mike Schatz realized a few years ago that his PacBio® System had reached the throughput needed to process human genomes, he decided to give it a real challenge: the incredibly complicated, massively rearranged SK-BR-3 breast cancer cell line. The genome consists of 80 chromosomes, and that’s just the tip of the complexity iceberg. “We were…

Read More »

Thursday, March 24, 2016

CSHL Scientists Discuss Long-Read Sequencing for More Contiguous Assemblies and Complex Genomes

Much like the “sharpen” tool in Photoshop brings a picture into tighter focus and enhances the fine detail, long-read sequencing offers enhanced resolution of genomic information, according to Cold Spring Harbor Laboratory colleagues Mike Schatz and Maria Nattestad. The scientists spoke with Mendelspod’s Theral Timpson about how long-read sequencing is advancing their research in unique and powerful ways; a brief recap of their conversation follows. Schatz uses PacBio sequencing to establish incredibly accurate assemblies of microbial, crop, animal, and human genomes. Indeed, SMRT technology has significantly improved his work on the flatworm Macrostomum lignano, an organism with regenerative powers. With…

Read More »

Tuesday, October 13, 2015

ASHG 2015: Highlights from Icahn Institute, UW, Stanford & CSHL Presentations

During the Wednesday afternoon sessions of last week's ASHG conference, several speakers provided helpful insights about their use of SMRT Sequencing for a range of applications. Highlights included the following: Yao Yang, a researcher at the Icahn School of Medicine at Mount Sinai, discussed the development of an assay to genotype the CYP2D6 gene to inform drug dosing in patients. CYP2D6 metabolizes 20-25% of all medications, including antidepressants, anti-psychotics, and opiates. There are more than 100 known variants, which include gene deletions and duplications. Variants can have profound impacts on how patients metabolize drugs, with some individuals being ultra-rapid metabolizers…

Read More »

Friday, September 25, 2015

Marc Salit at NIST: Defining Standards for the Human Genome

In the first podcast of a new series on the applications of long-read sequencing, Mendelspod host Theral Timpson interviewed Marc Salit, leader of the Genome Scale Measurements Group at the National Institute of Standards and Technology. Their conversation focused on how and why NIST is involved in establishing baseline measurements for the human genome.Salit, along with Justin Zook and their team at NIST, are managing the Genome in a Bottle (GIAB) Consortium to develop reference materials, data, and methods needed to assess whole human genome sequencing. Their goal is to establish a physical reference genome as a standard against which…

Read More »

Thursday, July 9, 2015

The Festival of Genomics Review: A Celebration of Long Reads

At the inaugural Festival of Genomics event in Boston, more than 1,500 people turned out to see what was billed as a conference unlike any other. The meeting was indeed unique, featuring a play (starring well-known scientists), a giant chess board, and a Genome Dome, in addition to the more familiar lineup of excellent speakers and workshops. To help kick off the festival, genomic luminaries Craig Venter and James Lupski presented plenary talks on day 1 and set the stage for some exciting science to follow. Lupski’s talk was particularly impactful, as he described how his team at Baylor recently…

Read More »

Thursday, April 30, 2015

In Study, Continuous Long Reads Outperform Synthetic Long Reads for Resolving Tandem Repeats

Scientists from Argentina and Brazil published the results of a study comparing long-read approaches to characterize the genome structure of a highly complex region of the Y chromosome in Drosophila melanogaster. They found that Single Molecule, Real-Time (SMRT®) Sequencing outperformed synthetic long reads in accurately representing tandem repeats. The study aimed to resolve the structure of the autosomal gene Mst77F, which had previously been found to have multiple tandem copies; the region, however, was known to be grossly misassembled in the reference. The scientists, from Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas and Universidade Federal…

Read More »

Wednesday, April 15, 2015

In Genome-wide Study, Long Reads Prove Critical for Structural Variant Discovery

In a paper just published in BMC Genomics, a team of scientists led by Baylor’s Human Genome Sequencing Center reports a thorough analysis of structural variation in a personal genome. What makes this study special is the large number of different technologies applied and the sheer volume of data gathered and analyzed for this single genome. The paper also includes the first known analysis of structural variation in a diploid human genome using SMRT® Sequencing, with 10x coverage from PacBio® long reads. Lead authors Adam English and William Salerno and their collaborators at a number of institutions describe the results…

Read More »

Monday, November 10, 2014

Nature Paper Offers Novel Sequence, Structural Variant Data for a More Complete Human Genome

A new paper out in Nature extends our view into the human genome and challenges current ideas about genetic variation. “Resolving the complexity of the human genome using single-molecule sequencing” comes from first author Mark Chaisson, senior author Evan Eichler, and their collaborators at the University of Washington, University of Bari Aldo Moro, and University of Pittsburgh. In the paper, the scientists describe an important effort to fill gaps and better characterize structural variation in the human genome by using Single Molecule, Real-Time (SMRT®) Sequencing data. The team sequenced a haploid human genome, using a hydatidiform mole cell line (CHM1),…

Read More »

Friday, March 14, 2014

AGBT 2014 Presentation Videos: SMRT Sequencing at CSHL, Uppsala U., and Baylor College of Medicine

There were several excellent talks showcasing SMRT® Sequencing data at the annual Advances in Genome Biology and Technology conference. If you didn’t have the opportunity to see them in person, you can watch the recordings: From Cold Spring Harbor Laboratory, Dick McCombie described the need for de novo sequencing, which preserves structural information that can be missed with resequencing. Organisms presented include yeast, Arabidopsis, and rice. McCombie notes that in many cases, full chromosomes are assembled into single contigs with long-read sequencing. He also presented the longest read seen at AGBT: more than 54 Kb. Watch video: A near perfect…

Read More »

Saturday, February 15, 2014

AGBT Day 1 & 2 Highlights: Hello GRCh38 & SMRT Sequencing for Pathogen Screening

AGBT 2014 is off to a roaring start - the opening reception was hastily moved indoors when an impressive thunderstorm joined the party. Wednesday’s kickoff plenary session offered an insightful view of the recently released human genome reference, known as GRCh38, which is available with GenBank accession GCA_000001405.15. Valerie Schneider from the National Center for Biotechnology Information gave a presentation on the latest build, highlighting improvements that range from alternate loci to modeled centromeres to error correction of individual bases. The Genome Reference Consortium resolved more than 1,000 reported issues from build 37 with the release of this new build…

Read More »

Tuesday, February 11, 2014

AGBT 2014 Preview: Long reads, long flight, long days!

We are flying cross-country to Marco Island, Florida, to attend the fifteenth annual Advances in Genome Biology and Technology conference and, as we have done for years now, we are proud to be sponsoring the event. This year we look forward to connecting with the many researchers who already work with SMRT® Sequencing data, and to meeting others whose scientific efforts could benefit from our technology’s uniquely long reads and base modification information. Here are some of the presentations we’ll be attending: Evan Eichler, University of Washington, “Advances in Sequencing Technology Identify New Mutations, Genes and Pathways Related to Autism” …

Read More »

1 2

Subscribe for blog updates:

Archives