+

X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Thursday, October 12, 2017

HGSV Consortium Study Identifies Sevenfold Increase in Structural Variation

The Human Genome Structural Variation Consortium, a successor to the 1000 Genomes Project Consortium, recently released a preprint describing an in-depth study of structural variant (SV) detection in human genomes. The scientists found that PacBio long-read sequencing and complementary technologies dramatically improve sensitivity for these important genomic elements when compared to standard short-read sequencing. “Multi-platform discovery of haplotype-resolved structural variation in human genomes” comes from lead authors Mark Chaisson, Ashley Sanders, and Xuefang Zhao; along with corresponding authors Charles Lee, Evan Eichler, and Jan Korbel; and many other consortium members. The study involved extensive sequencing of three family trios —…

Read More »

Thursday, February 2, 2017

Toward a Gold Standard for Human Structural Variation

Scientists from the University of Washington and McDonnell Genome Institute recently reported in Genome Research the results of an in-depth assessment of structural variation in the human genome using SMRT Sequencing technology. They found far more variation than expected and suggest using this approach to establish a comprehensive database of structural variants that would aid future studies. “Discovery and genotyping of structural variation from long-read haploid genome sequence data” comes from lead author John Huddleston, senior author Evan Eichler, and collaborators. The team fully sequenced two haploid human cell lines (CHM1 and CHM13) with SMRT Sequencing to greater than 60-fold…

Read More »

Wednesday, January 18, 2017

At the PacBio ASHG Workshop, Scientists Present Sequel System Data for Precision Medicine, Structural Variation, and More

  We were delighted to have so many ASHG attendees join our workshop, titled “Discovering and Targeting Causative Variation Underlying Human Genetic Disease Using SMRT Sequencing.” If you missed it, check out the video recordings, or read our summary below.   The event featured three impressive customer presentations, beginning with Euan Ashley from Stanford University. In his presentation titled “Towards Precision Medicine,” He started off by acknowledging that “genomic medicine is here” and described how genomes and exomes are now routinely sequenced on a daily basis, with impressive genetic discovery results. For patients with rare and undiagnosed disease, Ashley reported…

Read More »

Wednesday, October 5, 2016

Diploid Assembly of Korean Genome Reveals Population-Specific Variation and Novel Sequence

In a paper published today in Nature, scientists from Seoul National University, Macrogen, and other institutions present the de novo genome assembly for a Korean individual. The effort used SMRT Sequencing and other technologies to generate the assembly, fully phase all chromosomes, and perform detailed analyses of structural variation and other elements. In the process, the team generated novel sequence data that helps fill gaps in the human reference genome and continues the trend of developing important new population-specific resources. The work, reported in “De novo assembly and phasing of a Korean human genome,” was contributed by lead authors Jeong-Sun…

Read More »

Wednesday, July 6, 2016

In Chinese Genome Assembly, SMRT Sequencing Finds Novel Genes and Recovers Missing Sequence

A paper just out in Nature Communications reports the de novo genome assembly and transcriptome of a Chinese individual, generated from long-read SMRT Sequencing and other technologies. The effort revealed nearly 13 Mb of sequence not included in the GRCh38 reference genome as well as novel gene and alternative splicing content not annotated in GENCODE. “Long-read sequencing and de novo assembly of a Chinese genome” comes from lead author Lingling Shi at Jinan University and senior author Kai Wang from the University of Southern California, as well as many other collaborators in China and the US. The team was particularly interested in…

Read More »

Subscribe for blog updates:

Archives