+

X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Thursday, August 20, 2015

The Gapless Assembly: Scientists Describe Workflow for Producing Complete Eukaryote Genome

Sunflowers with verticillium wilt caused by V. dahliaeIn a new mBio publication, scientists from Wageningen University and KeyGene in The Netherlands report results from several strategies used to assemble the genome of a filamentous fungus, and describe the specific pipeline they recommend for sequencing and assembling eukaryotic genomes.“Single-Molecule Real-Time Sequencing Combined with Optical Mapping Yields Completely Finished Fungal Genome” comes from lead authors Luigi Faino and Michael Seidl, senior author Bart Thomma, and collaborators. Using Verticillium dahliae as a model, which is a plant pathogen responsible for the damaging verticillium wilt disease in many crop species, they compared short-read and…

Read More »

Wednesday, August 6, 2014

Plant and Animal Genomes: New Web Resource Available

After so many compelling customer projects for microbial genomes, it’s been rewarding to see more scientists turning to Single Molecule, Real-Time (SMRT®) Sequencing for larger genomes, such as plants and animals. Many PacBio users are performing de novo sequencing and assembly or upgrading draft genomes initially generated by short-read technologies. Extraordinarily long reads and throughput improvements have allowed scientists to affordably assemble and close genomes such as the Atlantic cod, spinach, and Orpinomyces, an anaerobic fungus found in the rumen of cows, to name a few. As reported by several customers at the 2014 Plant & Animal Genome conference in…

Read More »

Friday, June 27, 2014

At SFAF 2014, Great Science and High-Quality Genomes

It’s been a busy start to the summer, but we’re still basking in the top-notch presentations and posters from the Sequencing, Finishing, and Analysis in the Future meeting last month. Hosted by Los Alamos National Laboratory in Santa Fe, this has become a premier event for scientists working on sequencing protocols, analysis, and assembly methods. Many speakers presented data including reads from Single Molecule, Real-Time (SMRT®) Sequencing. Jeff Rogers from Baylor College of Medicine used long PacBio® reads with the PBJelly algorithm to fill gaps in many mammalian genomes, including sheep, rat, baboon, sooty mangabey, and mouse lemur. Tina Graves-Lindsay…

Read More »

Thursday, May 22, 2014

At ASM, Pioneering Scientists Presented Bacterial Methylome Highlights

This week’s annual meeting of the American Society for Microbiology was every bit as interesting, data-rich, and jam-packed as promised. We’re grateful to everyone who stopped by our booth and got to know more about Single Molecule, Real-Time (SMRT®) Sequencing. Our favorite session, “Bacterial Methylomes,” took place on the last day of the conference and was organized by Rich Roberts, Nobel laureate and Chief Scientific Officer at New England Biolabs. The session highlighted several projects analyzing genome-wide methylation states of bacteria, a task which has been all but impossible due to the technical inability to detect such base modifications. As…

Read More »

Wednesday, March 26, 2014

Importance of Finished Microbial Genome Highlighted for Ethanol-Generating Clostridium

A paper in BioMed Central’s Biotechnology for Biofuels journal demonstrates how finished microbial genomes using Single Molecule, Real-Time (SMRT®) Sequencing are having an impact on the biotechnology industry. The publication, “Comparison of single-molecule sequencing and hybrid approaches for finishing the genome of Clostridium autoethanogenum and analysis of CRISPR systems in industrial relevant Clostridia,” comes from scientists at Oak Ridge National Laboratory, the University of Tennessee, and New Zealand-based biofuels company LanzaTech. Lead authors Steven Brown and Shilpa Nagaraju and their colleagues used PacBio® sequencing to generate a finished genome sequence for a complex class III microbe that previously could not…

Read More »

Friday, March 14, 2014

AGBT 2014 Presentation Videos: SMRT Sequencing at CSHL, Uppsala U., and Baylor College of Medicine

There were several excellent talks showcasing SMRT® Sequencing data at the annual Advances in Genome Biology and Technology conference. If you didn’t have the opportunity to see them in person, you can watch the recordings: From Cold Spring Harbor Laboratory, Dick McCombie described the need for de novo sequencing, which preserves structural information that can be missed with resequencing. Organisms presented include yeast, Arabidopsis, and rice. McCombie notes that in many cases, full chromosomes are assembled into single contigs with long-read sequencing. He also presented the longest read seen at AGBT: more than 54 Kb. Watch video: A near perfect…

Read More »

Wednesday, January 29, 2014

At Plant & Animal Genome Workshop, Users Showcase Projects Enabled by SMRT Sequencing

Earlier this month, we hosted a workshop at the International Plant & Animal Genome (PAG) conference in San Diego entitled “A SMRT® Sequencing Approach to Reference Genomes, Annotation, and Haplotyping.” PacBio users presented data on various projects that have benefited from long-read sequence data, including several that had previously been attempted with short-read technologies without success. We were delighted to see reports on newer features of SMRT Sequencing, including full-length isoforms, automated haplotyping, and more. Here’s a recap, as well as links to video recordings of the presentations: Chongyuan Luo, a scientist from Joe Ecker’s lab at the Salk Institute…

Read More »

Tuesday, January 21, 2014

Genome Research Paper: Resolve Complex Genomic Regions for a ‘Fraction of the Cost’ With SMRT Sequencing

A new Genome Research paper describes the application of Single Molecule, Real-Time (SMRT®) Sequencing to resolve repeat-heavy genomic regions in important reference genomes such as human and chimpanzee. In the process, the authors drew some important conclusions about cost, pooling, and coverage requirements for this type of work. “Reconstructing complex regions of genomes using long-read sequencing technology” comes from lead author John Huddleston and senior author Evan Eichler at the University of Washington, along with collaborators at Washington University, the University of Bari, Bilkent University, and Pacific Biosciences. In the paper, Eichler and his collaborators note the steep cost of…

Read More »

Thursday, January 16, 2014

Looking Ahead: The 2014 PacBio Technology Roadmap

By Jonas Korlach, Chief Scientific Officer 2013 was an eventful and exciting year for PacBio. As I described in the 2013 roadmap post a year ago, we have applied numerous improvements to SMRT® Sequencing, resulting in longer read lengths, greater sequencing throughput, new and improved data-analysis methods, and more efficient workflows. We are very pleased that these advances resulted in so many publications, conference presentations, and social media contributions, with the number of peer-reviewed scientific publications from the scientific community now exceeding 100. On behalf of all of us at Pacific Biosciences, I would like to express my heartfelt gratitude…

Read More »

Tuesday, December 3, 2013

PacBio Partners with Sanger Institute and Public Health England to Finish 3,000 Bacterial Genomes

Sanger's Genome Campus We are pleased to announce a new collaboration with the Wellcome Trust Sanger Institute and Public Health England to complete the sequences of 3,000 bacterial genome strains from PHE’s National Collection of Type Cultures (NCTC). Sequencing will be performed on the PacBio® RS II DNA Sequencing System at the Sanger Institute. The three-year project could double the number of finished microbial genomes in GenBank. The NCTC is one of the world’s premier collections for bacterial strains, but most bacteria in NCTC currently have no genome references. Combining reference genomes with the wealth of historical and biological information…

Read More »

Thursday, November 7, 2013

Event Recap: Fall User Group Meeting Presentations & Review

In September we were excited to have 100+ customers gather in Palo Alto, Calif., to discuss their use of Single Molecule, Real-Time (SMRT®) Sequencing and hear about what’s next for the PacBio® RS II. Many thanks to all the scientists who attended and shared their experiences. For anyone who couldn’t make it, we’ve included some highlights from each talk below (and links to full presentations when possible): Chongyuan Luo from the Ecker lab at the Salk Institute for Biological Studies spoke about studying the genome and epigenome of several Arabidopsis thaliana strains using SMRT Sequencing. Luo noted that Arabidopsis is…

Read More »

Wednesday, November 6, 2013

At Institute for Genome Sciences, Long Reads Offer New Path to Finished Genomes

The Genomics Resource Center (GRC) at the Institute for Genome Sciences (IGS) has a scientific pedigree and a sample-to-interpretation service commitment that place it in a league of its own. The team operates under a simple mantra: ‘If it can be sequenced, we can do it.’ Both GRC and IGS were founded in 2007 when a high-powered team of investigators formerly at The Institute for Genomic Research (TIGR), led by Claire Fraser, joined the University of Maryland School of Medicine. “The group of faculty and senior staff that came here to start the institute was heavily focused on infectious disease…

Read More »

Monday, September 16, 2013

Genome Biology Paper Highlights Affordability and Scale of PacBio-Based Finished Microbial Genomes

A new paper released in Genome Biology on September 13 from lead author Sergey Koren at the National Biodefense Analysis and Countermeasures Center offers a thorough overview of SMRT® Sequencing for microbes, from per-genome cost to potential for assembling complete genomes. In “Reducing assembly complexity of microbial genomes with single-molecule sequencing,” Koren and co-authors consider microbial genome assembly, which evolved over time from the Sanger days of manually finished genomes to short-read sequencers that offered lots of sequence data but virtually no finished genomes. Today, that evolution has continued with SMRT® Sequencing, which allows for rapid and complete genome assembly.…

Read More »

Tuesday, September 3, 2013

New Data Release: Arabidopsis Assembly Offers Glimpse of
De Novo SMRT Sequencing for Larger Genomes

Update 1/13/14: A new data release of Arabidopsis using P5-C3 chemistry is available Advances in our chemistries, throughput, and read length are pushing the envelope in the way we tackle larger genomes. We recently sequenced the Landsberg erecta ecotype (Ler-0) of Arabidopsis thaliana and produced a successful assembly solely using PacBio® data. The data set resulting from this sequencing effort and assembly using SMRT® Portal is now available via Devnet for anyone who wants to give it a test drive. A few stats on Arabidopsis and the assembly using PacBio sequence data: Genome size: 124.6 Mb GC content: 33.92% Raw…

Read More »

Tuesday, August 27, 2013

Oklahoma Scientists Use SMRT Sequencing to Rescue Fungal Genome Assembly

Orpinomyces is found in cattle rumen. Scientists from Oklahoma State University and the University of Oklahoma teamed up with a sequencing service provider to study the genome of an anaerobic fungus found in the rumen of cows that may have implications for effective plant biomass degradation. What made this particular species so tricky to sequence were its extreme GC content — just 17 percent — and unusually high number of repeats.The study was reported in “The Genome of the Anaerobic Fungus Orpinomyces sp. Strain C1A Reveals the Unique Evolutionary History of a Remarkable Plant Biomass Degrader,” a paper published in…

Read More »

1 2

Subscribe for blog updates:

Archives