+

X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

Stanford Scientists Report First Use of PacBio Whole Genome Sequencing to Identify a Disease-Causing Mutation

Thursday, June 22, 2017

An article published today in Genetics in Medicine from Jason Merker, Euan Ashley, and colleagues at Stanford University reports the first successful application of PacBio whole genome sequencing to identify a disease-causing mutation. (Check out Stanford’s news release here.) The authors describe an individual who presented over 20 years with a series of benign tumors in his heart and glands. The individual satisfied the clinical criteria for Carney complex, but after eight years of genetic evaluation, including whole genome short-read sequencing, experts were still unable to pinpoint the underlying genetic mutation and confirm a diagnosis.

Ultimately, the authors turned to the Sequel System to evaluate structural variants, large genetic differences that involve at least 50 base pairs and are uniquely discoverable with long-read sequencing. This quickly led to the identification of the causative mutation: a 2.2 kb deletion that affects PRKAR1A, the gene involved in Carney complex. This case demonstrates the ability of long-read sequencing on the Sequel System to reveal genetic variation that is inaccessible with short-read technologies and highlights the potential to apply PacBio sequencing to precision medicine [1].

A human genome has around 20,000 structural variants (differences ≥50 bp) spanning 10 Mb, more base pairs than single nucleotide variants and small indels put together. Because structural variants tend to lie in repetitive regions of the genome and/or are larger than short-read sequencers can span, the vast majority (80%) are identified only by long-read sequencing. This means even so-called “whole” genome sequencing with short reads misses much of the variation in a human genome. [2]

 

 

Figure 1. Structural variation in the human genome. (a) Types of structural variation. (b) Differences between two typical human genomes. (c) Structural variants detected in a typical human genome with PacBio sequencing compared to short-read sequencing.

 

Carney complex, a multiple neoplasia syndrome, is exceedingly rare, with fewer than 750 cases ever reported. Most individuals with the syndrome have a mutation that inactivates one of the two copies of the gene PRKAR1A. However, in the case reported today, clinical sequencing of PRKAR1A did not reveal any mutations. Then, short-read whole genome sequencing was applied to look for mutations throughout the genome, but it was uninformative. Ashley, Merker and colleagues were then driven to apply PacBio long-read sequencing to evaluate structural variants missed by previous methods.

The Sequel System was used to generate approximately eight-fold coverage of the human genome. Reads were mapped with NGM-LR [3], and structural variants were called with PBHoney [4], yielding 6,971 deletions and 6,821 insertions. These were filtered for rare, genic variants associated with disease genes, which left only six candidates for manual evaluation. One of the six variants was a heterozygous 2.2 kb deletion that removes the first coding exon of PRKAR1A. The variant was evaluated with Sanger sequencing in the individual and his parents, which demonstrated that the deletion is a de novo mutation not present in the parents.

Approximately two-thirds of individuals with presumed genetic disorders remain undiagnosed even after short-read exome and whole genome sequencing. It is hypothesized many of the undiagnosed cases are explained by variants missed by short-read sequencing technologies, most notably structural variants, variants in GC-rich regions of the genome, and repeat expansions [5]. The study published today provides a proof-of-principle demonstrating that PacBio long-read sequencing identifies previously overlooked structural variants, even at relatively low sequencing coverage. We are excited by upcoming studies that will evaluate many more cases to elucidate the improvement in diagnostic yield from long-read sequencing, and to demonstrate that precision medicine requires a comprehensive view of genetic variation.

 

[1] Merker JD, et al. (2017). Genetics in Medicine.

[2] Huddleston J, et al. (2017). Genome Research, 27(5):677-685.

[3] https://github.com/philres/nextgenmap-lr

[4] English AC, et al. (2015). BMC Genomics, 16:286.

[5] Biesecker LG, et al. (2011). Genome Biology, 12(9):128.

Subscribe for blog updates:

Archives