+

X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

Scientists Develop More Accurate Variant-Calling Procedure for Important Drug Metabolism Enzyme Using SMRT Sequencing

Wednesday, January 6, 2016

In an article entitled “Long-read single-molecule real-time (SMRT) full gene sequencing of cytochrome P450-2D6 (CYP2D6)” in Human Mutation, authors Wangiong Qiao, Yao Yang, Stuart Scott and other colleagues at the Icahn School of Medicine at Mount Sinai demonstrate a new way of analyzing the CYP2D6 gene using PacBio long reads. This gene has been shown to have a central role in drug metabolism and is believed to be directly involved in the metabolism of ~25% of all commonly used drugs. Given its importance, CYP2D6 genotype testing is now being widely used to predict how efficiently patients will metabolize drugs such as codeine, antidepressants, or antipsychotics.

Studying CYP2D6 presents many challenges. It is highly polymorphic, “with over 100 variant star (*) alleles catalogued, many of which are associated with reduced or no enzyme activity,” the authors report. In addition, it is highly prone to copy number variation. Both gene duplications and deletions can occur, with pseudogenes maintaining high sequence homology to functional copies. As a result, “Accurate prediction of CYP2D6 metabolizer status necessitates direct analysis of the duplicated gene copy (or copies) when an increased copy number is detected, particularly when identified concurrently with normal activity and loss-of-function alleles in compound heterozygosity,” the authors write. Such copy number changes can alter the interpretation of CYP2D6 phenotypes.

In their publication, the authors describe targeted long-read sequencing of the CYP2D6 gene along with upstream and downstream gene copies by using targeted long-range PCR and barcoding for multiplexing. The analysis consisted of demultiplexing, read alignment using BWA-MEM software, and error correction using Amplicon Long-read Error Correction (ALEC) that was developed by the authors. The team began by validating their SMRT Sequencing pipeline with 10 previously characterized DNA samples, showing that not only were they able to correctly call genotypes, but their approach provided additional information about variants that had been missed by other platforms. Specifically, SMRT Sequencing enabled the team to further refine the genotypes, reclassify diplotypes (two haplotypes, i.e., multiple genotypes on homologous chromosomes), characterize allele-specific duplication, and discover novel alleles.

After validation work, they then applied their method to 14 samples that previously had been found to yield inconclusive or unreliable results. SMRT Sequencing was able to reconcile the discrepancies that had been seen from the other platforms and provide new data. “In addition to confirming consensus diplotypes, CYP2D6 SMRT sequencing enabled suballele resolution, genotype refinement, duplicated allele characterization, and discovery of a novel tandem arrangement,” the scientists report.

The authors conclude, “Long-read CYP2D6 SMRT sequencing is an innovative, reproducible, and validated method for full-gene characterization, duplication allele-specific analysis and novel allele discovery, which will likely improve CYP2D6 metabolizer phenotype prediction for both research and clinical testing applications.”

You can also watch Dr. Stuart Scott describing this research in a presentation he gave at the American Society of Human Genetics meeting in 2014.

Subscribe for blog updates:

Archives