+

X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

Happy DNA Day! A Celebration of Great Science

Tuesday, April 25, 2017

It’s DNA Day, the annual celebration of the discovery of the double helix, the completion of the Human Genome Project, and all things genetic. We like to take the opportunity to look back at DNA-based advances from the past year, and progress has been truly stunning. Just when we think it couldn’t get more awe-inspiring, scientists generate new results that prove us wrong.

One of the most impressive feats in the past year has been the proliferation of population-specific, reference-grade human genomes. From the Chinese genome assembly that recovered nearly 13 Mb of sequence missed in GRCh38 and produced new insights around alternative splicing to the diploid Korean genome assembly that detected nearly 12,000 novel structural variants — including several specific to Asian populations — these new resources are showing us how much sequencing must be done to represent the universe of natural human genetic variation. Several other country or population genome projects have reported results or are in the works, and we’re eager to see how this data fills in the blanks to help us better understand the human genome. Structural variation in particular is being detected more comprehensively than ever, with even small amounts of long-read sequencing helping scientists to connect these elements to their likely function.

We’ve also seen compelling work from the plant and animal research community. Just in the past year, scientists have published new high-quality genome assemblies for quinoa and goat, shattering contiguity records even for challenging genomes. In maize, researchers reported new studies that produced accurate gene copy number counts and a more complex transcriptome than anticipated. Alternative splicing was also the focus of a sorghum study. And we were delighted to learn that the Genome 10K (G10K) and Bird 10,000 Genomes (B10K) initiatives announced plans to ramp up their efforts to generate high-quality de novo genome assemblies.

On the microbial front, we were especially fascinated by a new report detailing the epigenetic changes that occur as free-living bacteria morph into symbiotic bacteria associated with a host. There was also a project that investigated how drug-resistance plasmids are swapped across bacterial species by analyzing the entire “mobilome” of carbapenemase-producing Enterobacteriaceae. And since we’re suckers for extremophile research, we couldn’t resist this genome profile of a single-celled diatom living in the Antarctic Ocean.

All of these projects were accomplished with SMRT Sequencing. On DNA Day, we’d like to congratulate the entire research community working to improve our understanding of genomics.

Subscribe for blog updates:

Archives