+

X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

Crow Genome Analysis Combines Assemblies to Spot Tandem Arrays

Tuesday, April 11, 2017

Photo by Jonn Leffmann

A new publication in Genome Research shows how the use of SMRT Sequencing, in combination with other technologies, can reveal far more about repetitive DNA and structural variants than short-read sequencing alone. In this paper, scientists compared genome assemblies produced with short reads, long reads, and optical maps to understand the performance of each approach.

From Uppsala University, the University of Munich, and Bionano Genomics, the team studied the Eurasian crow for this project. The resulting paper, “Combination of short-read, long-read and optical mapping assemblies reveals large-scale tandem repeat arrays with population genetic implications,” comes from lead author Matthias Weissensteiner, senior author Jochen Wolf, and collaborators. They used an existing short-read assembly and generated a de novo PacBio long-read assembly and an optical map with Bionano Genomics, all from the same individual.

The PacBio-only assembly alone delivered a major improvement over the short-read assembly. Contiguity increased by almost 90-fold, with the long-read assembly featuring a contig N50 longer than 8.5 Mb. The SMRT Sequencing assembly also resolved more than 70 Mb of sequence missed in the short-read assembly, including nearly 16 Mb of repetitive elements.

The various assemblies were then compared and joined to determine how each source of information contributed to a final, high-quality genome resource. This step allowed the team to spot mis-assemblies, which occurred more frequently in the short-read assembly. They detected 43 mis-joins in the short-read assembly, and fewer than half that number in the long-read assembly.

One of the motivating factors for this project was an interest in understanding the repetitive DNA associated with constitutive heterochromatin, which has an influence on recombination. To that end, the team analyzed large tandem repeat arrays in the crow genome and used population resequencing data to estimate effects on recombination rate. “We characterized 36 previously unidentified large repetitive regions in the proximity of sequence assembly breakpoints, the majority of which contained complex arrays of a 14-kb satellite repeat or its 1.2-kb subunit,” the scientists report. They determined that the recombination rate was “significantly reduced in these regions.”

“Our results demonstrate the potential of combining independent technologies to discover previously inaccessible genomic features,” Weissensteiner et al. write. “With an emerging picture of genome architecture affecting the distribution of genetic diversity across genomes, the integration of large tandem repeat arrays into genome assemblies constitutes an important improvement.”

We’re delighted to see the release of another high-quality avian genome, which will support ongoing efforts in the B10K and G10K projects to represent as many species as possible.

Subscribe for blog updates:

Archives