+

X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences’ rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

CRISPR/Cas9 and SMRT Sequencing Yield New Phenotype Association for SCA10 Repeat Expansion Disorder

Wednesday, September 6, 2017

A compelling new paper from scientists at the Parkinson’s Institute and Clinical Center, Houston Methodist Research Institute, and several other organizations demonstrates the importance of fully sequencing repeat expansion regions for a clearer understanding of the underlying biology of the diseases they cause. This publication also offers a look at how CRISPR/Cas9 capture can be used in combination with SMRT Sequencing to access the expanded repetitive region at a base level resolution without any PCR bias.

Parkinson’s disease associated with pure ATXN10 repeat expansion” comes from lead authors Birgitt Schüle and Karen McFarland, senior author Tetsuo Ashizawa, and collaborators. The study involved a Mexican family with one individual previously diagnosed with Parkinson’s disease and several members with spinocerebellar ataxia.

Clinical genetic testing had found an ataxia-associated pentanucleotide repeat expansion in the patient with Parkinson’s, and this team hoped to learn more. “To further genetically characterize the ATXN10 repeat expansion and to better understand the phenotypic differences of progressive cerebellar ataxia with seizures and parkinsonism,” they write, “we employed several advanced and novel molecular genetic techniques to dissect the genetic structure of the repeat expansion in this family.”

Among those techniques was a new method that combined the sequence-specific endonuclease activity of the CRISPR/Cas9 system with long-read SMRT Sequencing. The team reports that they were able to use this method to snip out genomic ATXN10 repeat expansion regions, some  spanning up to 7 kb in length, and sequence them “as one continuous fragment without prior amplification of the genomic DNA.” This was done for six family members, with results indicating that most affected family members had a string of 480 ATTCT repeats followed by about 920 ATTCC repeat interruptions. Strikingly, the family member with ataxia and parkinsonism had a different expansion: more than 1,300 ATTCT repeats but no ATTCC repeats. “We propose that the absence of repeat interruptions play a role in the underlying disease process acting as a genetic modifier and leading to the clinical presentation of L-Dopa responsive parkinsonism,” the scientists write, adding that the repeat interruptions may contribute to the development of epilepsy.

“Single molecule sequencing paired with SMRT/Cas9 capture approach allowed us to characterize the genetic composition of the complete repeat expansion which revealed a novel phenotype-genotype correlation for Parkinson’s disease and ATXN10,” the team adds, highlighting the importance of adding to existing knowledge of repeat expansion types and possible phenotypes. “We conclude that the underlying genetic architecture of ATXN10 repeat expansions is critical for presentation of clinical phenotypes and presumably also the underlying pathology.”

Subscribe for blog updates:

Archives