+

X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

The Antibiotic Arms Race: Tracking K. pneumoniae in a Hospital Setting

Tuesday, December 5, 2017

Courtesy of NIAID

In a recent paper, scientists in Germany call for a genomic database of Klebsiella pneumoniae strains to accelerate strain identification as well as drug-resistance status. To that end, they used SMRT Sequencing to generate high-quality assemblies for 16 isolates collected in German hospitals.

Monitoring microevolution of OXA-48-producing Klebsiella pneumoniae ST147 in a hospital setting by SMRT sequencing” comes from lead authors Andreas Zautner and Boyke Bunk, senior authors Jorg Overmann and Wolfgang Bohne, and collaborators at University Medical Center and other institutes in Germany.

The urgency to characterize K. pneumoniae strains comes from the rapid rise of carbapenem-resistant Klebsiella given that drug resistance, and increasingly multidrug resistance (MDR), is a major public health threat with these infections. “A continuous monitoring of [strain type] distribution and its association with resistance and virulence genes is essential for early detection of successful K. pneumoniae lineages,” the scientists report.

K. pneumoniae strains carry plasmids encoding different types of carbapenemase, which confers resistance to the carbapenem class of antibiotics. OXA-48 is currently the most common carbapenemase found in K. pneumoniae isolates in Germany, according to the authors; similar strains are commonly found in North Africa, the Middle East, and European countries along the Mediterranean. The team chose to focus on OXA-48 strains, selecting 16 isolates collected in 2013 and 2014 for whole genome SMRT Sequencing.

The technology choice was no accident. “A comprehensive K. pneumoniae database of closed genomes is necessary for a complete understanding of the genome plasticity of these organisms and can significantly improve the tracking of MDR isolates,” the scientists write. With SMRT Sequencing, they were able to generate closed genomes. In most cases they used a single SMRT Cell per strain, and “a consensus concordance of QV60 could be confirmed for all genomes,” they report.

Based on the 16 genome assemblies, the scientists determined that half of the isolates shared the same type, ST147, and differed by no more than 25 SNPs throughout the core genome. They identified several plasmids, including a novel linear plasmid prophage of Klebsiella oxytoca. “The comparative whole-genome analysis revealed several rearrangements of mobile genetic elements and losses of chromosomal and plasmidic regions in the ST147 isolates,” they write.

“Single molecule real-time sequencing allowed monitoring of the genetic and epigenetic microevolution of MDR OXA-48-producing K. pneumoniae,” the team concludes, noting that the approach was amenable to spotting individual SNPs, as well as complex rearrangements.

Subscribe for blog updates:

Archives